X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

B mua một con bò giá 10 triệu, bán 12 triệu. Vì tiếc nên B mua lại giá 15 triệu, rồi bán


Câu hỏi:

B mua một con bò giá 10 triệu, bán 12 triệu. Vì tiếc nên B mua lại giá 15 triệu, rồi bán được 17 triệu. Vậy B lãi hay lỗi bao nhiêu?

Trả lời:

B mua bò hết tổng số vốn là:

10 + 15 = 25 (triệu)

B bán bò được số tiền là:

12 + 17 = 29 (triệu)

Vậy B lãi số tiền:

29 – 25 = 4 (triệu).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).

Xem lời giải »


Câu 2:

Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.

Xem lời giải »


Câu 3:

Tìm x biết: (4x – 3)2 – 3x(3 – 4x) = 0.

Xem lời giải »


Câu 4:

Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).

Xem lời giải »


Câu 5:

Cho biểu thức: \(C = \frac{x}{{2x - 2}} + \frac{{{x^2} + 1}}{{2 - 2{x^2}}}\).

a) Tìm ĐKXĐ.

b) Rút gọn C.

c) Tìm x để \(C = \frac{{ - 1}}{2}\).

Xem lời giải »


Câu 6:

Cho 2 vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4;\left| {\overrightarrow b } \right| = 3;\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi α là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Tìm cosα?

Xem lời giải »


Câu 7:

Cho 2 hàm số y = (k – 2)x + k và y = (k + 3)x – k. Với giá trị nào của k thì đồ thị của 2 hàm số cắt nhau tại 1 điểm:

a) Trên trục tung.

b) Trên trục hoành.

Xem lời giải »


Câu 8:

Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC.

a) Chứng minh rằng các tứ giác AODE,BOCF là hình vuông.

b) Nối EC cắt DF tại I. Chứng minh rằng OI CD.

c) Biết diện tích hình lục giác ABFCDE = 6 .Tính độ dài các cạnh của hình vuông ABCD.

d) Lấy K là 1 điểm bất kì trên BC. Gọi G là trọng tâm của tam giác AIK. Chứng minh G thuộc 1 đường thẳng cố định khi K di chuyển trên BC.

Xem lời giải »