X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Bài toán Ủng hộ miền Trung năm 2020: Một chuyến hàng ủng hộ miền Trung có 300


Câu hỏi:

Bài toán Ủng hộ miền Trung năm 2020: Một chuyến hàng ủng hộ miền Trung có 300 thùng mì tôm, 240 thùng nước ngọt và 420 lốc sữa. Các cô chú muốn chia thành các phần quà đều nhau về số lượng mì, nước và sữa. Con hãy giúp các cô chú chia sao cho số lượng các phần quà là nhiều nhất.

Trả lời:

Gọi phần quà chia được nhiều nhất là x

Theo bài ra, ta có:

300 chia hết cho x

240 chia hết cho x

420 chia hết cho x

x ƯCLN(300; 240; 420) 

Ta lại có:

300 = 22.3.52

240 = 24.3.5

420 = 22.3.5.7

x ƯCLN (300; 240; 420) = 22.3.5 = 60

Vậy có thể chia được nhiều nhất 60 phần quà.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho a + b + c = 0. Chứng minh a3 + b3 + c3 = abc.

Xem lời giải »


Câu 6:

Cho a ≥ 1; b ≥ 9; c ≥ 16 thỏa mãn a.b.c = 1152. Tìm giá trị lớn nhất của biểu thức P = \(bc\sqrt {a - 1} + ca\sqrt {b - 9} + ab\sqrt {c - 16} \).

Xem lời giải »


Câu 7:

Cho hàm số y = (m – 2)x + m + 1 (d)

a) Với giá trị nào của m thì hàm số đã cho là hàm số bậc nhất ?

b) Với giá trị nào của m thì hàm số đã cho là hàm số đồng biến?

c) Tìm m để (d) song song với (d1): y = 3x + 2.

d) Vẽ đồ thị hàm số với m = 5.

Xem lời giải »


Câu 8:

Cho hình chóp S .ABC có G là trọng tâm tam giác ABC. Gọi M là điểm trên cạnh SA sao cho MA = 2MS, K là trung điểm BC và D là điểm đối xứng của G qua A.

 a) Tìm giao điểm H của SK với (MCD).

b) Tính tỉ số \(\frac{{HK}}{{SK}}\).

Xem lời giải »