X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho 31 số nguyên trong đó tổng của 5 số bất kì là 1 số dương. Chứng minh rằng tổng của 31 số nguyên đó là 1 số dương.


Câu hỏi:

Cho 31 số nguyên trong đó tổng của 5 số bất kì là 1 số dương. Chứng minh rằng tổng của 31 số nguyên đó là 1 số dương.

Trả lời:

Trong các số đã cho ít nhất có 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 số bất kỳ trong chúng sẽ là số âm trái với giả thiết.

Tách riêng số dương đó còn 30 số chia làm 6 nhóm. Theo đề bài tổng các số của mỗi nhóm đều là số dương nên tổng của 6 nhóm đều là số dương và do đó tổng của 31 số đã cho đều là số dương.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm x nguyên để A = x2+3x+1x+2   có giá trị là số nguyên.

Xem lời giải »


Câu 2:

Tìm x, y > 0 biết x – y = 7 và xy = 60.

Xem lời giải »


Câu 3:

Tìm số tự nhiên n biết 3n + 4n = 5n.

Xem lời giải »


Câu 4:

Tìm x sao cho x4 + 2x3 + 2x2 + x + 3 là số chính phương.

Xem lời giải »


Câu 5:

Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC và CA; D, E, F lần lượt là trung điểm các đoạn HA, HB và HC.

a) Chứng minh rằng các tứ giác MNFD và MEFP là các hình chữ nhật.

Xem lời giải »


Câu 6:

b) Để các đoạn MD, ME và DP bằng nhau thì tam giác ABC phải là tam giác gì?

Xem lời giải »


Câu 7:

Cho đường thẳng (m – 2)x + (m – 1)y = 1 (m là tham số)

a) Chứng minh rằng đường thẳng luôn đi qua 1 điểm cố định với mọi m.

Xem lời giải »


Câu 8:

b) Xác định m để khoảng cách từ gốc tọa độ O đến đường thẳng là lớn nhất.

Xem lời giải »