X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho biểu thức A = ( căn bậc hai x / (2 + căn bậc hai x) + c / (4 - x) : 1/ (2 - căn bậc hai x


Câu hỏi:

Cho biểu thức A = \(\left( {\frac{{\sqrt x }}{{2 + \sqrt x }} + \frac{x}{{4 - x}}} \right):\frac{1}{{2 - \sqrt x }}\).

a) Tìm điều kiện xác định rồi rút gọn biểu thức A.

b) Tìm x để A = –3.

Trả lời:

a) Điều kiện xác định: x ≥ 0; x ≠ 4.

A = \(\left( {\frac{{\sqrt x }}{{2 + \sqrt x }} + \frac{x}{{4 - x}}} \right):\frac{1}{{2 - \sqrt x }}\)

\[ = \left( {\frac{{\sqrt x \left( {2 - \sqrt x } \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} + \frac{x}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right):\frac{1}{{2 - \sqrt x }}\]

\[ = \frac{{\sqrt x \left( {2 - \sqrt x } \right) + x}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}.\left( {2 - \sqrt x } \right)\]

\[ = \frac{{2\sqrt x - x + x}}{{2 + \sqrt x }}\]

\[ = \frac{{2\sqrt x }}{{2 + \sqrt x }}\].

b) Để A = – 3 thì \[\frac{{2\sqrt x }}{{2 + \sqrt x }} = - 3\]

\[2\sqrt x = - 3\left( {2 + \sqrt x } \right)\]

\[2\sqrt x = - 6 - 3\sqrt x \]

\[5\sqrt x = - 6\]

\[\sqrt x = \frac{{ - 6}}{5}\](vô lí vì \(\sqrt x \ge 0\))

Vậy không tồn tại x thỏa mãn A = –3.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho hình hộp ABCD.EFGH có \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b ,\overrightarrow {AE} = \overrightarrow c \). Gọi I là trung điểm của BG. Hãy biểu thị \(\overrightarrow {AI} \) theo \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \].

Xem lời giải »


Câu 6:

Cho tam giác ABC, đường trung tuyến AM. Gọi I là điểm bất kì trên đoạn thẳng AM, các tia BI, CI lần lượt cắt các cạnh AC, AB tại D, E. Chứng minh rằng: \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\).

Xem lời giải »


Câu 7:

Cho tam giác ABC cân tại A và \(\widehat A = 36^\circ \). Chứng minh rằng: AB2 = AB.BC + BC2.

Xem lời giải »


Câu 8:

Cho tam giác ABC, đường phân giác AD. Chứng minh AD2 < AB.AC.

Xem lời giải »