X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình hộp ABCD.EFGH có vecto AB = vecto a, vecto AD = vecto b, vecto AE = vecto c


Câu hỏi:

Cho hình hộp ABCD.EFGH có \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b ,\overrightarrow {AE} = \overrightarrow c \). Gọi I là trung điểm của BG. Hãy biểu thị \(\overrightarrow {AI} \) theo \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \].

Trả lời:

Cho hình hộp ABCD.EFGH có vecto AB = vecto a, vecto AD = vecto b, vecto AE = vecto c (ảnh 1)

\(\overrightarrow {AI} = \overrightarrow {AB} + \overrightarrow {BI} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {BG} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AH} \)

\[ = \overrightarrow {AB} + \frac{1}{2}\left( {\overrightarrow {AD} + \overrightarrow {AE} } \right) = \overrightarrow a + \frac{1}{2}\overrightarrow b + \frac{1}{2}\overrightarrow c \].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho tam giác ABC, đường trung tuyến AM. Gọi I là điểm bất kì trên đoạn thẳng AM, các tia BI, CI lần lượt cắt các cạnh AC, AB tại D, E. Chứng minh rằng: \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\).

Xem lời giải »


Câu 6:

Cho tam giác ABC cân tại A và \(\widehat A = 36^\circ \). Chứng minh rằng: AB2 = AB.BC + BC2.

Xem lời giải »


Câu 7:

Cho tam giác ABC, đường phân giác AD. Chứng minh AD2 < AB.AC.

Xem lời giải »


Câu 8:

Cho tam giác ABC có trọng tâm G. H là điểm đối xứng với B qua G. Biểu diễn \(\overrightarrow {AH} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \).

Xem lời giải »