X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC, đường phân giác AD. Chứng minh AD^2 < AB.AC


Câu hỏi:

Cho tam giác ABC, đường phân giác AD. Chứng minh AD2 < AB.AC.

Trả lời:

Cho tam giác ABC, đường phân giác AD. Chứng minh AD^2 < AB.AC (ảnh 1)

Lấy E trên AC sao cho \(\widehat {ADE} = \widehat B\)

Xét ∆ADE và ∆ABD có:

\(\widehat {ADE} = \widehat B\)

\(\widehat {BAD} = \widehat {DAE}\)

∆ADE ∆ABD (g.g)

\(\frac{{AD}}{{AB}} = \frac{{AE}}{{AD}}\) AD2 = AB.AE < AB.AC.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho tam giác ABC có trọng tâm G. H là điểm đối xứng với B qua G. Biểu diễn \(\overrightarrow {AH} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \).

Xem lời giải »


Câu 6:

Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H.

a) Chứng minh rằng bốn điểm A; D; H; E cùng nằm trên một đường tròn (gọi tâm của nó là O).

b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến đường tròn (O).

Xem lời giải »


Câu 7:

Cho tam giác ABC có BC = 10 cm, chiều cao AH = 9 cm.

a) Tính diện tích tam giác ABC.

b) Gọi M và N lần lượt là trung điểm của AB và AC. P và Q là trung điểm của AM, AN. Tính diện tích tam giác AMN.

Xem lời giải »


Câu 8:

Cho đường tròn (O) đường kính AB, E thuộc đoạn AO (E khác A, O và AE > EO). Gọi H là trung điểm của AE , kẻ dây CD vuông góc với AE tại H.

a) Tính góc ACB ?

b) Tứ giác ACED là hình gì ?

c) Gọi I là giao điểm của DE và BC . Chứng minh HI là tiếp tuyến của đường tròn đường kính EB ?

Xem lời giải »