X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho các chữ số 0;1;2;3;4;5. Từ các chữ số này ta có thể lập được bao nhiêu số có 3


Câu hỏi:

Cho các chữ số 0;1;2;3;4;5. Từ các chữ số này ta có thể lập được bao nhiêu số có 3 chữ số khác nhau từng đôi một và chia hết cho 9 ?

Trả lời:

Gọi số có 3 chữ số khác nhau có dạng: \[\overline {abc} \]

+ Để số có 3 chữ số chia hết cho 9  Tổng a + b + c phải chia hết cho 9

+ Tập hợp các số mà tổng của chúng chia hết cho 9 là:

A = {0, 5, 4}

 Các số đó là: 540, 450, 504, 405  Vậy có 4 số

B = {2, 3, 4} Đảo vị trí 3 số ta có: 3!

C = {1, 3, 5} Đảo vị trí 3 số ta có: 3!

Vậy có: 4 + 3! + 3! = 16 số.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho hình chóp S.ABCD, có đáy ABCD là hình vuông. SA = SC; SB = SD; O = AC giao BD.

a) Chứng minh: SO vuông góc với mặt phẳng (ABCD).

b) Chứng minh: BD vuông góc với (SAC) và AC vuông góc với mặt phẳng (SBD).

c) Chứng minh: (SBD) vuông góc với (SAC); (SBD) vuông góc với (ABCD).

Xem lời giải »


Câu 6:

Cho hình chóp tứ giác đều cạnh đáy bằng a, SB = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp?

Xem lời giải »


Câu 7:

Cho tam giác ABC vuông tại A có AB = a, BC = 2a. Tính \(\overrightarrow {BC} .\overrightarrow {CA} + \overrightarrow {BA} .\overrightarrow {AC} \) theo a?

Xem lời giải »


Câu 8:

Cho điểm M thuộc đoạn thẳng AB sao cho 2MA = 5MB. Khi đó ta có biểu thức liên hệ giữa vectơ \(\overrightarrow {MA} \)\(\overrightarrow {AB} \).

Xem lời giải »