Cho các tập hợp khác rỗng A = [m - 1; (m + 3) / 2] và B = (- vô cùng; -3) hợp
Câu hỏi:
Cho các tập hợp khác rỗng \[A = \left[ {m - 1;\frac{{m + 3}}{2}} \right]\] và B = (−∞;−3) ∪ [3;+∞). Tìm tập hợp các giá trị thực của m để A Ç B ¹ Æ.
Trả lời:
Để A Ç B ¹ Æ thì \[\left\{ \begin{array}{l}\left[ \begin{array}{l}m - 1 < - 3\\\frac{{m + 3}}{2} \ge 3\end{array} \right.\\m - 1 \le \frac{{m + 3}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m < - 2\\m \ge 3\end{array} \right.\\m \le 5\end{array} \right.\]
\[ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m < - 2\\m \le 5\end{array} \right.\\\left\{ \begin{array}{l}m \ge 3\\m \le 5\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m < - 2\\3 \le m \le 5\end{array} \right.\]
Vậy \[m \in \left\{ { - \infty ; - 2} \right\} \cup {\rm{[}}3;5]\].