X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Trong dãy số 1, 2, 3, 4, 199, 200 có bao nhiêu số: a) Chia hết cho 9 b) Chia dư


Câu hỏi:

Trong dãy số \[1,\,\,2,\,\,3,\,\,4,\,\, \ldots ,\,\,199,\,\,200\] có bao nhiêu số:
a) Chia hết cho \[9\]                 

b) Chia \[9\]\[2\]

Trả lời:

a) Gọi A là tập hợp các số chia hết cho 9 trong dãy số trên

A = {9; 18; 27; 36;…; 198}

Số số hạng là: (198 – 9) : 9 + 1 = 22 (số)

Vậy có 22 số thoả mãn đề bài.

b) Gọi B là tập hợp các số chia cho 9 dư 2 trong dãy số

B = {2; 11; 20; 29; 38;…; 200}

Số số hạng là: (200 – 2) : 9 + 1 = 23 (số)

Vậy có 23 số thoả mãn đề bài.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Cho tập hợp A = {1; 2; 3; …; 10}. Chọn ngẫu nhiên ba số từ A. Tìm xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

Xem lời giải »


Câu 6:

Cho hình bình hành ABCD, AB > AD. Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD lần lượt tai M, N. Chứng minh:    

OM = ON.

Xem lời giải »


Câu 7:

Cho hình bình hành ABCD, AB > AD. Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD lần lượt tai M, N. Chứng minh: Tứ giác BMDN là hình bình hành.

Xem lời giải »


Câu 8:

Tìm trung bình cộng của các số sau:

5; 10; 15; 20;….; 2000; 2005

Xem lời giải »