Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a
Câu hỏi:
Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a. CD = a. Góc giữa 2 mặt phẳng (SBC) và (ABCD) bằng 60º. Gọi I là trung điểm của cạnh AD. Biết 2 mặt phẳng ( SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD theo a.
Trả lời:
\[\left\{ \begin{array}{l}(SIB) \bot (ABCD)\\(SIC) \bot (ABCD)\end{array} \right. \Rightarrow SI \bot (ABCD)\]
Kẻ IK ⊥ BC (K ∈ BC) Þ BC ⊥ (SIK)
\[ \Rightarrow \widehat {SKI} = 60^\circ \]
Diện tích hình thang ABCD: SABCD = 3a2
Tổng diện tích các tam giá ABI và CDI bằng \[\frac{{3{a^2}}}{2}\]suy ra \[{S_{\Delta IBC}} = \frac{{3{a^2}}}{2}\]
\[BC = \sqrt {{{\left( {AB - CD} \right)}^2} + A{D^2}} = a\sqrt 5 \]
\[ \Rightarrow IK = \frac{{2{S_{\Delta IBC}}}}{{BC}} = \frac{{3\sqrt 5 a}}{5}\]
\[ \Rightarrow SI = IK.\tan \widehat {SKI} = \frac{{3\sqrt {15} a}}{5}\]
Thể tích của khối chóp S.ABCD là: \[V = \frac{1}{3}{S_{ABCD}}.SI = \frac{{3\sqrt {15} {a^2}}}{5}\]
Vậy thể tích của khối chóp S.ABCD là \[\frac{{3\sqrt {15} {a^2}}}{5}\].