X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Rút gọn biểu thức: A = căn bậc hai x / (căn bậc hai x - 5) - 10 căn bậc hai x / (x - 25)


Câu hỏi:

Rút gọn biểu thức: \[A = \frac{{\sqrt x }}{{\sqrt x - 5}} - \frac{{10\sqrt x }}{{x - 25}} - \frac{5}{{\sqrt x + 5}}\] (x ≥ 0; x ¹ 25)

Trả lời:

\[A = \frac{{\sqrt x }}{{\sqrt x - 5}} - \frac{{10\sqrt x }}{{x - 25}} - \frac{5}{{\sqrt x + 5}}\] (x ≥ 0; x ¹ 25)

\[ = \frac{{\sqrt x }}{{\sqrt x - 5}} - \frac{{10\sqrt x }}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}} - \frac{5}{{\sqrt x + 5}}\]

\[ = \frac{{\sqrt x \left( {\sqrt x + 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}} - \frac{{10\sqrt x }}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}} - \frac{{5\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}\]

\[ = \frac{{\sqrt x \left( {\sqrt x + 5} \right) - 10\sqrt x - 5\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}\]

\[ = \frac{{x + 5\sqrt x - 10\sqrt x - 5\sqrt x + 25}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}\]\[ = \frac{{x - 10\sqrt x + 25}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}\]

\[ = \frac{{{{\left( {\sqrt x - 5} \right)}^2}}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}} = \frac{{\sqrt x - 5}}{{\sqrt x + 5}}\].

Vậy \[A = \frac{{\sqrt x - 5}}{{\sqrt x + 5}}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Rút gọn biểu thức:

\[A = \frac{{x - 2\sqrt x }}{{x\sqrt x - 1}} + \frac{{\sqrt x + 1}}{{x\sqrt x + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{{x^2} - \sqrt x }}\] (x > 0, x ¹ 1)

Xem lời giải »


Câu 6:

Giải hệ phương trình:

\[\left\{ {\begin{array}{*{20}{c}}{{{(x + y)}^2}\left( {8{x^2} + 8{y^2} + 4xy - 13} \right) + 5 = 0}\\{2x + \frac{1}{{x + y}} = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

Xem lời giải »


Câu 7:

Giải hệ phương trình: \[\left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{b^2} = 23}\\{a + b = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\].

Xem lời giải »


Câu 8:

Cho tam giác ABC đều. Mệnh đề nào sau đây sai?

Xem lời giải »