Rút gọn biểu thức: A = (x - 2 căn bậc hai x) / (x căn bậc hai x - 1) + (căn bậc hai x + 1)
Câu hỏi:
Rút gọn biểu thức:
A=x−2√xx√x−1+√x+1x√x+x+√x+1+2x−2√xx2−√x (x > 0, x ¹ 1)
Trả lời:
A=x−2√xx√x−1+√x+1x√x+x+√x+1+2x−2√xx2−√x (x > 0, x ¹ 1)
=x−2√xx√x−1+√x+1x√x+x+√x+1+2x−2√x√x(x√x−1)
=x−2√x(√x−1)(x+√x+1)+√x+1√x(x+√x+1)+1+2x−2√x√x(√x−1)(x+√x+1)
=√x(x−2√x)√x(√x−1)(x+√x+1)+(√x−1)(√x+1)√x(√x−1)(x+√x+1)+1+2x−2√x√x(√x−1)(x+√x+1)
=x√x−2x+x−1+1+2x−2√x√x(√x−1)(x+√x+1)
=x√x+x−2√x√x(√x−1)(x+√x+1)
=√x(x+√x−2)√x(√x−1)(x+√x+1)
=√x(√x−1)(√x+2)√x(√x−1)(x+√x+1)
=√x+2x+√x+1
Vậy A=√x+2x+√x+1.