Cho đường thẳng d: y = 2x + 6 cắt Ox; Oy theo thứ tự A và B. Diện tích tam giác OAB là: A. 9; B. 18; C. 12; D. 6.
Câu hỏi:
Cho đường thẳng d: y = 2x + 6 cắt Ox; Oy theo thứ tự A và B. Diện tích tam giác OAB là:
A. 9;
B. 18;
C. 12;
D. 6.
Trả lời:
Lời giải
Đáp án đúng là: A
Đường thẳng d cắt Ox tại A nên yA = 0
Khi đó 2xA + 6 = 0 hay xA = –3
Do đó A(–3; 0). Suy ra OA = 3
Đường thẳng d cắt Oy tại B nên xB = 0
Khi đó 2 . 0 + 6 = yB hay yB = 6
Do đó B(0; 6). Suy ra OB = 6
Vì tam giác AOB vuông tại O nên
\({S_{AOB}} = \frac{1}{2}OA.OB = \frac{1}{2}.3.6 = 9\)
Vậy ta chọn đáp án A.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.
Xem lời giải »
Câu 2:
Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \[{\rm{A}}M = \frac{{AC}}{4}\]. Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).
Xem lời giải »
Câu 3:
Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).
Xem lời giải »
Câu 4:
Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.
a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).
b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Giả sử BC = 2a. Tính BM . CN.
d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?
Xem lời giải »
Câu 5:
Tìm các số nguyên n sao cho 2n3 + n2 + 7n + 1 chia hết cho 2n – 1.
Xem lời giải »
Câu 6:
Số nào khác tính chất với các số còn lại: 9678, 4572, 5261, 5133, 3527, 6895, 7768.
Xem lời giải »
Câu 7:
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Kẻ DE vuông góc với AB; DF vuông góc với AC. Chứng minh:
a) ∆DEB = ∆DFC;
b) ∆AED = ∆AFD;
c) AD là tia phân giác của \(\widehat {BAC}\).
Xem lời giải »
Câu 8:
Tìm x biết \(\left| {2{\rm{x}} - 3} \right| - \left| {3{\rm{x}} + 2} \right| = 0\).
Xem lời giải »