X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số f(x) có đồ thị hàm đường cong (C), biết đồ thị của f'(x) như hình


Câu hỏi:

Cho hàm số f(x) có đồ thị hàm đường cong (C), biết đồ thị của f'(x) như hình vẽ:

Tiếp tuyến của (C ) tại điểm có hoành độ bằng 1 cắt đồ thị (C ) tại hai điểm A, B phân biệt lần lượt có hoành độ a, b. Chọn khẳng định đúng trong các khẳng định sau:

A. 4ab4

B. a,b0

C. a,b<3

D. a2+b2>10

Trả lời:

Đáp án D

Từ đồ thị, ta có f'1=0

Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 1 có dạng: y=f'(1)(x1)+f(1)y=f1

Phương trình hoành độ giao điểm của tiếp tuyến trên với đồ thị (C): fx=f1

Từ đồ thị, ta có: f'1=f'3=0. Ta được BBT của hàm số y=f(x)

Từ BBT, ta thấy đường thẳng y=f(1) cắt đồ thị hàm số tại ba điểm có hoành độ lần lượt là 1, a, b với a < - 1 và b > 3. Như vậy đáp án D đúng, các khẳng định A, B, C đều không thỏa điều trên.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Với mỗi số thực x, gọi f(x) là giá trị nhỏ nhất trong các số g1x=4x+1,g2x=x+2,g3x=2x+4. Giá trị lớn nhất của f(x) trên R là:

Xem lời giải »


Câu 2:

Biết rằng đồ thị của hàm số y=P(x)=x32x25x+2 cắt trục hoành tại ba điểm phân biệt lần lượt có hoành độ là x1,x2,x3. Khi đó giá trị của biểu thức T=1x124x1+3+1x224x2+3+1x324x3+3 bằng:

Xem lời giải »


Câu 3:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Đồ thị hàm số y=fx2017+2018 có bao nhiêu điểm cực trị?

Xem lời giải »


Câu 4:

Cô An đang ở khách sạn A bên bờ biển, cô cần đi du lịch đến hòn đảo C. Biết rằng khoảng cách từ đảo C đến bờ biển là 10km, khoảng cách từ khách sạn A đến điểm B trên bờ gần đảo C nhất là 50km. Từ khách sạn A, cô An có thể đi đường thủy hoặc đi đường bộ rồi đi đường thủy đến hòn đảo C (như hình vẽ). Biết rằng chi phí đi đường thủy là 5USD/km, chi phí đi đường bộ là 3USD/km. Hỏi cô An phải đi đường bộ một khoảng bao nhiêu km để chi phí là nhỏ nhất.

Xem lời giải »


Câu 5:

Cho hàm số y=xm33x+m2 có đồ thị là Cm với m là tham số thực. Biết điểm M(a; b) là điểm cực đại của Cm ứng với một giá trị m thích hợp, đồng thời là điểm cực tiểu của Cm ứng với một giá trị khác của m. Tổng S=2018a+2020b bằng:

Xem lời giải »


Câu 6:

Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m cắt đồ thị y=x3+6x29x+2 tại 3 điểm phân biệt A, B, C. Gọi B’, C’ lần lượt là hình chiếu vuông góc của B, C lên trục tung. Tìm giá trị dương của m để hình thang BB’C’C có diện tích bằng 8.

Xem lời giải »


Câu 7:

Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y=x+1m2x2+m1 có 4 đường tiệm cận.

Xem lời giải »


Câu 8:

Cho hàm số y=f(x)=ax3+bx2+cx+d có đồ thị như hình bên. Đặt gx=fx2+x+2. Chọn khẳng định đúng trong các khẳng định sau:

Xem lời giải »