Cho lăng trụ ABC.A’B’C’ có cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, AC = a căn bậc hai của 3. Hình chiếu vuông góc của A’ lên (ABC) trùng với trung điểm I của BC. Tính khoản
Câu hỏi:
Cho lăng trụ ABC.A’B’C’ có cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, \(AC = a\sqrt 3 \). Hình chiếu vuông góc của A’ lên (ABC) trùng với trung điểm I của BC. Tính khoảng cách giữa BB’ và AC’.
Trả lời:
Lời giải
Ta có BB’ // (ACC’A’) và AC’ ⊂ (ACC’A’).
Suy ra d(BB’, AC’) = d(BB’, (ACC’A’)) = d(B, (ACC’A’)).
Gọi J là trung điểm AC.
Khi đó IJ là đường trung bình của tam giác ABC.
Suy ra IJ // AB và \(IJ = \frac{{AB}}{2} = \frac{a}{2}\).
Mà AB ⊥ AC.
Do đó IJ ⊥ AC.
Mà A’I ⊥ AC (do A’I ⊥ (ABC)).
Suy ra AC ⊥ (A’IJ).
Trong (A’IJ): kẻ IK ⊥ A’J tại K.
Khi đó AC ⊥ IK.
Mà IK ⊥ A’J.
Do đó IK ⊥ (ACC’A’).
Vì vậy d(I, (ACC’A’) = IK.
Tam giác ABC vuông tại A có AI là đường trung tuyến.
Suy ra \(AI = IB = IC = \frac{{BC}}{2} = \frac{{\sqrt {A{B^2} + A{C^2}} }}{2} = a\).
Tam giác AA’I vuông tại I: \(A'I = \sqrt {A{{A'}^2} - A{I^2}} = a\sqrt 3 \).
Tam giác A’IJ vuông tại I có IK là đường cao: \[\frac{1}{{I{K^2}}} = \frac{1}{{A'{I^2}}} + \frac{1}{{I{J^2}}} = \frac{{13}}{{3{a^2}}}\].
Suy ra \(IK = \frac{{a\sqrt {39} }}{{13}}\).
Do đó \(d\left( {B,\left( {ACC'A'} \right)} \right) = \frac{{CB}}{{CI}}.d\left( {I,\left( {ACC'A'} \right)} \right) = 2.IK = \frac{{2a\sqrt {39} }}{{13}}\).
Vậy khoảng cách giữa BB’ và AC’ bằng \(\frac{{2a\sqrt {39} }}{{13}}\).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).
Xem lời giải »
Câu 2:
Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.
Xem lời giải »
Câu 3:
Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, \(\widehat D = 60^\circ \). Tính diện tích hình bình hành ABCD.
Xem lời giải »
Câu 4:
Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?
Xem lời giải »
Câu 5:
Cho tam giác ABC có AB = 5, BC = 6 và AC = 9. Gọi M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AC = 3NC. Tính tích vô hướng \(\overrightarrow {AM} .\overrightarrow {BN} \).
Xem lời giải »
Câu 6:
Cho tam giác ABC vuông tại A, biết \(\overrightarrow {AB} .\overrightarrow {CB} = 4\), \(\overrightarrow {AC} .\overrightarrow {BC} = 9\). Tìm AB, AC, BC.
Xem lời giải »
Câu 7:
Tìm tất cả các giá trị của m để hàm số y = –4x2 + 4mx – m2 + 2 nghịch biến trên (–2; +∞).
Xem lời giải »