X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng nhau và bằng a. Tính thể tích V khối cầu ngoại tiếp hình chóp S.ABCD.


Câu hỏi:

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng nhau và bằng a. Tính thể tích V khối cầu ngoại tiếp hình chóp S.ABCD.

Trả lời:

Lời giải

Media VietJack

Gọi O là giao điểm của AC và BD ta có OA = OB = OC = OD

Ta lại có DABC = DASC Þ BO = SO

Þ OA = OB = OC = OD = SO

Suy ra O là tâm của khối cầu ngoại tiếp hình chóp S.ABCD

Ta có \(r = OA = \frac{{a\,.\,\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}\)

Vậy, \(V = \frac{4}{3}\pi {\left( {\frac{{a\sqrt 2 }}{2}} \right)^3} = \frac{{\pi {a^3}\sqrt 2 }}{3}\)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:

\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]

Xem lời giải »


Câu 2:

Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.

Xem lời giải »


Câu 3:

Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?

Xem lời giải »


Câu 4:

Chứng minh phương trình sau đây vô nghiệm:

5sin 2x + sin x + cos x + 6 = 0.

Xem lời giải »


Câu 5:

Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.

a) Chứng minh BE = CD, AD = AE.

b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.

Xem lời giải »


Câu 6:

Tính đạo hàm của hàm số y = 2x.

Xem lời giải »


Câu 7:

Tính đạo hàm \(\frac{1}{x}\).

Xem lời giải »


Câu 8:

Cho biểu thức: \(N = \frac{{2x - 10}}{{{x^2} - 7x + 10}} - \frac{{2x}}{{{x^2} - 4}} + \frac{1}{{2 - x}}\).

a) Rút gọn N.

b) Tìm giá trị nguyên của x để N nhận giá trị nguyên.

Xem lời giải »