Cho khối chóp đều S.ABCD có tất cả các cạnh đều bằng a căn bậc hai của 3. Tính thể tích V của khối cầu ngoại tiếp hình chóp.
Câu hỏi:
Cho khối chóp đều S.ABCD có tất cả các cạnh đều bằng \(a\sqrt 3 \). Tính thể tích V của khối cầu ngoại tiếp hình chóp.
Trả lời:
Lời giải
Gọi O là giao điểm của AC và BD ta có OA = OB = OC = OD
Ta lại có DABC = DASC Þ BO = SO
Þ OA = OB = OC = OD = SO
Suy ra O là tâm của khối cầu ngoại tiếp hình chóp S.ABCD
Ta có \(r = OA = \frac{{a\sqrt 3 \,.\,\sqrt 2 }}{2} = \frac{{a\sqrt 6 }}{2}\)
Vậy, \(V = \frac{4}{3}\pi {\left( {\frac{{a\sqrt 6 }}{2}} \right)^3} = \pi {a^3}\sqrt 6 \)
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:
\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]
Xem lời giải »
Câu 2:
Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.
Xem lời giải »
Câu 3:
Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?
Xem lời giải »
Câu 4:
Chứng minh phương trình sau đây vô nghiệm:
5sin 2x + sin x + cos x + 6 = 0.
Xem lời giải »
Câu 5:
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng nhau và bằng a. Tính thể tích V khối cầu ngoại tiếp hình chóp S.ABCD.
Xem lời giải »
Câu 6:
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Xem lời giải »