X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A, AB = 2a, góc BAC


Câu hỏi:

Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A, AB = 2a, \(\widehat {BAC} = 120^\circ ,\;\widehat {SBA} = \widehat {SCA} = 90^\circ \). Biết góc giữa SB và đáy bằng 60°. Tính thể tích V của khối chóp S.ABC.

Trả lời:

Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A, AB = 2a, góc BAC (ảnh 1)

Gọi M, N lần lượt là trung điểm của SA, BC.

Ta có: ∆SAB, ∆SAC lần lượt vuông tại B, C nên:

\(BM = CM = \frac{1}{2}SA = MS = MA\)

Suy ra hình chóp M.ABC có MA = MB = MC nên hình chiếu của M lên mặt phẳng (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC.

Dựng hình bình hành ABIC ta có: IB = AC = 2a, IC = AB = 2a

Tam giác ABC cân tại A nên AN ^ BC (trung tuyến đồng thời là đường cao) và \(\widehat {BAN} = 60^\circ \) (trung tuyến đồng thời là đường phân giác).

Xét tam giác vuông ABC có AN = AB.cos 60° = a

Þ AI = 2AN = 2a

Do đó IA = IB = IC = 2a nên I là tâm đường tròn ngoại tiếp ∆ABC

Þ MI ^ (ABC)

Trong mặt phẳng (AMI) có SH // MI (H Î AI) và SH ^ (ABC)

Suy ra HB là hình chiếu của SB lên (ABC)

Do đó \(\left( {\widehat {SB;\;\left( {ABC} \right)}} \right) = \left( {\widehat {SB;\;HB}} \right) = \widehat {SBH} = 60^\circ \)

Xét tam giác SAH có M là trung điểm của SA, SH // MI nên I là trung điểm của AH (Định lí đường trung bình)

Þ AH = 2AI = 4a

Áp dụng định lí Cosin trong tam giác ABH ta có:

BH2 = AB2 + AH2 − 2AB.AH.cos 60°

\( = {\left( {2a} \right)^2} + {\left( {4a} \right)^2} - 2\,.\,2a\,.\,4a\,.\,\frac{1}{2} = 12{a^2}\)

\( \Rightarrow BH = 2a\sqrt 3 \)

Xét tam giác vuông SBH có: SH = BH.tan 60° = 6a

\({S_{\Delta ABC}} = \frac{1}{2}AB\,.\,AC\,.\,\sin \widehat {BAC} = \frac{1}{2}2a\,.\,2a\,.\,\sin 120^\circ = {a^2}\sqrt 3 \)

Vậy \({V_{S.ABC}} = \frac{1}{3}SH\,.\,{S_{\Delta ABC}} = \frac{1}{3}\,.\,6a\,.\,{a^2}\sqrt 3 = 2{a^3}\sqrt 3 \).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f (x) đồng biến trên khoảng (a; b). Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 2:

Cho hàm số y = f (x) có đạo hàm trên khoảng (a; b). Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 3:

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tỉ số thể tích của khối chóp S.MNPQ và khối chóp S.ABCD bằng:

Xem lời giải »


Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB. Tính tỉ số thể tích \(\frac{{{V_{S.CDMN}}}}{{{V_{S.CDAB}}}}\).

Xem lời giải »


Câu 5:

Cho hình chóp S.ABC có đáy ABC là ta giác vuông cân tại A, cạnh AB = 2a. Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy Gọi M là trung điểm của SB và N là điểm trên cạnh SC sao cho SC = 3SN. Tính thể tích V của khôi chóp S.AMN.

Xem lời giải »


Câu 6:

Cho hình chóp S.ABC có SA ^ (ABC). AB = a; \(AC = a\sqrt 2 ;\;\widehat {BAC} = 45^\circ \). Gọi B1, C1 lần lượt là hình chiều vuông góc của A lên SB, SC. Tính thể tích mặt cầu ngoại tiếp hình chóp A.BCC1B1.

Xem lời giải »


Câu 7:

Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, cạnh bên SA vuông góc với đáy, M là trung điểm của BC, J là trung điểm của BM. Mệnh đề nào sau đây đúng?

Xem lời giải »


Câu 8:

Có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh?

Xem lời giải »