X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho khối lăng trụ tam giác ABC.A'B'C', đáy là tam giác ABC đều cạnh a. Gọi M


Câu hỏi:

Cho khối lăng trụ tam giác ABC.A'B'C', đáy là tam giác ABC đều cạnh a. Gọi M là trung điểm AC. Biết tam giác A'MB cân tại A' và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Góc giữa A'B với mặt phẳng (ABC) là 30°. Thể tích khối lăng trụ đã cho là:

Trả lời:

Cho khối lăng trụ tam giác ABC.A'B'C', đáy là tam giác ABC đều cạnh a. Gọi M (ảnh 1)

Gọi H là trung điểm BM, tam giác A'BM cân tại A' nên A'H ^ BM

Ta có: 

\(\left\{ \begin{array}{l}\left( {A'BM} \right) \bot \left( {ABC} \right)\\\left( {A'BM} \right) \cap \left( {ABC} \right) = BM\\A'H \bot BM\end{array} \right. \Rightarrow A'H \bot \left( {ABC} \right)\)

Tam giác ABC đều cạnh a nên ta có: 

\(\left\{ \begin{array}{l}BM = \frac{{a\sqrt 3 }}{2} \Rightarrow BH = \frac{{a\sqrt 3 }}{4}\\{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\end{array} \right.\)

A'B có hình chiếu vuông góc trên (ABC) là HB

Góc tạo bởi A'B với mặt phẳng (ABC) là góc A'BH (vì góc A'BH là góc nhọn)

Xét tam giác A'BH vuông tại H, ta có: \(\widehat {A'BH} = 30^\circ \)

\(\tan \widehat {A'BH} = \frac{{A'H}}{{BH}}\)

\( \Rightarrow \tan 30^\circ = \frac{{A'H}}{{\frac{{a\sqrt 3 }}{4}}}\)

\( \Rightarrow A'H = \frac{{a\sqrt 3 }}{4}\,.\,\tan 30^\circ = \frac{a}{4}\)

Vậy \({V_{ABC.A'B'C'}} = A'H\,.\,{S_{\Delta ABC}} = \frac{a}{4}\,.\,\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{{16}}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f (x) đồng biến trên khoảng (a; b). Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 2:

Cho hàm số y = f (x) có đạo hàm trên khoảng (a; b). Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 3:

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tỉ số thể tích của khối chóp S.MNPQ và khối chóp S.ABCD bằng:

Xem lời giải »


Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB. Tính tỉ số thể tích \(\frac{{{V_{S.CDMN}}}}{{{V_{S.CDAB}}}}\).

Xem lời giải »


Câu 5:

Giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (3 5sin x)2018 là M và m. Khi đó giá trị M + m là:

Xem lời giải »


Câu 6:

Cho hàm số: y = 3 5sin x, giá trị lớn nhất và nhỏ nhất của hàm số là M và m. Tính \(\frac{M}{m}\).

Xem lời giải »


Câu 7:

Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1; x2 thỏa mãn x12 + x22 = 6.

Xem lời giải »


Câu 8:

Tìm m để y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1, x2 thỏa mãn x12 + x22 = 3.

Xem lời giải »