X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho một điểm A cố định và một đường thẳng a cố định không đi qua A. Gọi O là một điểm thay đổi trên a. Chứng minh rằng các mặt cầu tâm O bán kính r = OA luôn luôn đi qua một đường tròn cố địn


Câu hỏi:

Cho một điểm A cố định và một đường thẳng a cố định không đi qua A. Gọi O là một điểm thay đổi trên a. Chứng minh rằng các mặt cầu tâm O bán kính r = OA luôn luôn đi qua một đường tròn cố định.

Trả lời:

Lời giải

Media VietJack

Gọi (P) là mặt phẳng đi qua A và vuông góc với đường thẳng a tại H. Khi đó (P) và H cố định.

Ta có: (P) cắt mặt cầu S(O; R) theo đường tròn tâm H và bán kính HA không đổi.

Vậy các mặt cầu tâm O bán kính R = OA luôn đi qua đường tròn cố định tâm H bán kính bằng HA.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:

\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]

Xem lời giải »


Câu 2:

Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.

Xem lời giải »


Câu 3:

Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?

Xem lời giải »


Câu 4:

Chứng minh phương trình sau đây vô nghiệm:

5sin 2x + sin x + cos x + 6 = 0.

Xem lời giải »


Câu 5:

Cho hàm số f (x) có đạo hàm trên khoảng (a; b). Trong các mệnh đề sau, mệnh đề nào sai?

Xem lời giải »


Câu 6:

Cho hàm số y = f (x) có đạo hàm trên (a; b). Phát biểu nào sau đây sai?

Xem lời giải »


Câu 7:

Cho hàm số \(y = \frac{x}{2} + \cos x\). Mệnh đề nào sau đây đúng?

Xem lời giải »


Câu 8:

Cho hàm số y = ecos x. Mệnh đề nào sau đây đúng?

Xem lời giải »