X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho parabol (P): y = x^2 và đường thẳng (d): y = -x + 2. a) Vẽ (d) và (P) trên cùng một


Câu hỏi:

Cho parabol (P): y = x2 và đường thẳng (d): y = −x + 2.

a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ Oxy.

b) Tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) bằng phép tính.

Trả lời:

a) Ta có:

(P) đi qua các điểm có tọa độ như bảng sau:

x

–2

–1

0

1

2

y = x2

4

1

0

1

4

Đỉnh của (P) là O(0;0)

(d) đi qua các điểm có tọa độ (0;2), (2;0)

Ta có đồ thị như sau:

Cho parabol (P): y = x^2 và đường thẳng (d): y = -x + 2. a) Vẽ (d) và (P) trên cùng một  (ảnh 1)

b) Xét phương trình hoành độ giao điểm:

x2 = –x + 2

x2 + x – 2 = 0

x2 + 2x – x – 2 = 0

x(x + 2) – (x + 2) = 0

(x + 2)(x – 1) = 0

\(\left[ \begin{array}{l}x = - 2\\x = 1\end{array} \right.\)

\(\left[ \begin{array}{l}y = 4\\y = 1\end{array} \right.\)

Vậy hai đồ thị cắt nhau tại hai điểm phân biệt A(−2; 4) và B(1; 1).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho tam giác ABC có trọng tâm G. Gọi D và E là các điểm xác định bởi vectơ \(\overrightarrow {AD} = 2\overrightarrow {AB} ,\overrightarrow {AE} = \frac{2}{5}\overrightarrow {AC} \).

a) Tính \(\overrightarrow {AG} ,\overrightarrow {DE} ,\overrightarrow {DG} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \).

b) Chứng minh: D, E, G thẳng hàng.

Xem lời giải »


Câu 6:

Cho tam giác ABC. Gọi M là trung điểm của AB và N là điểm trên cạnh AC sao cho NC = 2NA. Gọi K là trung điểm của MN. Biểu diễn \(\overrightarrow {AK} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \).

Xem lời giải »


Câu 7:

Cho x – y = 1. Chứng minh x3 – y3 = 1 + 2xy.

Xem lời giải »


Câu 8:

Cho đường tròn (O) và một điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là hai tiếp điểm). Gọi I là giao điểm của OM và AB. Kẻ đường kính BC của (O). Chứng minh OI.OM = OA2

Xem lời giải »