X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho phương trình: x^2 - 4x + m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x


Câu hỏi:

Cho phương trình: x2 – 4x + m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: x13 + x23 – 5(x12 + x22) = 26.

Trả lời:

x2 – 4x + m = 0

Δ = (−4)2 − 4.1.m = 16 − 4m

Để phương trình có 2 nghiệm phân biệt thì 

16 − 4m > 0 −4m > −16 m < 4

Theo hệ thức Vi-et, ta có: \[\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 4}\\{{x_1}.{x_2} = m}\end{array}} \right.\]

Ta có: x13 + x23 5(x12 + x22) = 26

(x1 + x2)3 − 3x1x2(x1 + x2) − 5[(x1 + x2)2 − 2x1x2] = 26

43 − 3.m.4 – 5(42 − 2m) = 26

64 − 12m – 80 + 10m = 26

−2m = −18

m = 9 (không thỏa mãn)

Vậy không có giá trị m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn đề bài.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Cho phương trình: x2 – 4x + m + 1 = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: x12 + x22 = 12.

Xem lời giải »


Câu 6:

Trong mặt phẳng Oxy cho hai điểm A(1; 6), B(−1; −4). Gọi C, D lần lượt là ảnh của A và B qua phép dời hình \[\left\{ \begin{array}{l}x' = x + 1\\y' = y + 5\end{array} \right.\]. Chứng minh bốn điểm A, B, C, D thẳng hàng.

Xem lời giải »


Câu 7:

Trong mặt phẳng tọa độ Oxy cho điểm M(2;3). Tìm ảnh của điểm M qua phép đối xứng trục Ox.

Xem lời giải »


Câu 8:

Trong mặt phẳng tọa độ Oxy cho điểm A(3; 5). Tìm ảnh của điểm M qua phép đối xứng trục Oy.

Xem lời giải »