Cho số phức z thỏa mãn |z| = 4. Biết tập hợp biểu diễn các số phức w = (3 + 4i)z
Câu hỏi:
Cho số phức z thỏa mãn |z| = 4. Biết tập hợp biểu diễn các số phức w = (3 + 4i)z + i là một đường tròn. Tìm bán kính R của đường tròn đó.
Trả lời:
Giả sử w = a + bi. Ta có
w = (3 + 4i)z + i
Û a + bi = (3 + 4i)z + i
Û a + (b − 1)i = (3 + 4i)z
Theo giả thiết cho |z| = 4 nên ta có:
Û (3a + 4b − 4)2 + (−4a + 3b − 3)2 = 1002
Û 25a2 + 25b2 + 25 − 50b = 1002
Û a2 + b2 − 2b + 1 = 202
Û a2 + (b − 1)2 = 202
Tập hợp các điểm trong mặt phẳng tọa độ Oxy biểu diễn số phức w là một đường tròn có bán kính bằng 20.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Đa thức P (x) = 32x5 − 80x4 + 80x3 − 40x2 + 10x − 1 là khai triển của nhị thức nào dưới đây?
Xem lời giải »
Câu 2:
Cho đoạn thẳng AB. Vị trí của điểm M thỏa mãn: được xác định bởi:
Xem lời giải »
Câu 3:
Cho hai điểm A, B phân biệt. Xác định điểm M biết .
Xem lời giải »
Câu 4:
Cho a, b, c là 3 cạnh trong tam giác. Chứng minh rằng: .
Xem lời giải »
Câu 5:
Cho số phức z thỏa mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức w = 3 − 2i + (2 − i)z là một đường tròn, bán kính R của đường tròn đó bằng:
Xem lời giải »
Câu 6:
Cho hàm số f (x) liên tục trên ℝ và thoả mãn
. Tính .
Xem lời giải »
Câu 7:
Cho hàm số f (x) liên tục trên ℝ và thoả mãn f (x) + f (−x) = 2cos 2x, "x Î ℝ. Khi đó bằng:
Xem lời giải »
Câu 8:
Cho hàm số f (x) liên tục trên ℝ. Biết rằng và . Tính .
Xem lời giải »