Cho hàm số f (x) liên tục trên ℝ và thoả mãn f (x) + f (−x) = 2cos 2x, với mọi x thuộc R
Câu hỏi:
Cho hàm số f (x) liên tục trên ℝ và thoả mãn f (x) + f (−x) = 2cos 2x, "x Î ℝ. Khi đó bằng:
Trả lời:
Ta có: f (x) + f (−x) = 2cos 2x
Đặt t = −x Þ dt = − dx Û dx = − dt
Khi đó:
= 0
Vậy .
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Đa thức P (x) = 32x5 − 80x4 + 80x3 − 40x2 + 10x − 1 là khai triển của nhị thức nào dưới đây?
Xem lời giải »
Câu 2:
Cho đoạn thẳng AB. Vị trí của điểm M thỏa mãn: được xác định bởi:
Xem lời giải »
Câu 3:
Cho hai điểm A, B phân biệt. Xác định điểm M biết .
Xem lời giải »
Câu 4:
Cho a, b, c là 3 cạnh trong tam giác. Chứng minh rằng: .
Xem lời giải »
Câu 5:
Cho hàm số f (x) liên tục trên ℝ. Biết rằng và . Tính .
Xem lời giải »
Câu 6:
Cho hàm số f (x) liên tục trên ℝ và có . Tính .
Xem lời giải »
Câu 8:
Biết hàm số F (x) là một nguyên hàm của hàm số có đồ thị đi qua điểm (e; 2016). Khi đó hàm số F (1) là:
Xem lời giải »