Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC, K là điểm đối xứng
Câu hỏi:
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC, K là điểm đối xứng với A qua M.
a) Chứng minh tứ giác ABKC là hình thoi.
b) Tam giác ABC cần thêm điều kiện gì thì tứ giác ABKC là hình vuông?
c) Qua A kẻ đường thẳng song song với BC, đường thẳng này cắt đường thẳng CK tại D. Chứng minh AD = BC.
Trả lời:
a) Xét tứ giác ABKC:
M là trung điểm của AK
M là trung điểm của BC
⇒ Tứ giác ABKC là hình bình hành (2 đường chéo cắt nhau tại trung điểm mỗi đường)
△ABC cân tại A, đường trung tuyến AM
⇒ AM đồng thời là đường cao
⇒ AM ⊥ BC ⇒ AK ⊥ BC
⇒ Tứ giác ABKC là hình thoi (hình bình hành có 2 đường chéo vuông góc)
b) Tứ giác ABKC là hình thoi (cmt)
⇒ Để tứ giác ABKC là hình vuông
⇔ AB ⊥ AC
⇒ △ABC vuông tại A
⇒ Để tứ giác ABKC là hình vuông thì △ABC cần thêm điều kiện là tam giác vuông tại A
c) Tứ giác ABKC là hình thoi (cmt)
⇒ AB // KC
Xét tứ giác ABCD:
AD // BC(gt)
AB // CD (AB // KC)
⇒ Tứ giác ABCD là hình bình hành (các cạnh đối song song)
⇒ AD = BC.