X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC vuông cân tại A, BC  a. Quay hình tròn ngoại tiếp tam giác vuông ABC


Câu hỏi:

Cho tam giác ABC vuông cân tại A, BC = a. Quay hình tròn ngoại tiếp tam giác vuông ABC xung qunah cạnh BC ta được một khối tròn xoay có thể tích bằng:

Trả lời:

Khi quay hình tròn ngoại tiếp tam giác vuông cân ABC quanh cạnh BC ta nhận được 1 khối cầu đường kính BC, khi đó bán kính khối cầu là:

R=BC2=a2

Vậy thể tích khối cầu là:

V=43πR3=43π.a23=πa36

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3].

Xem lời giải »


Câu 2:

Tìm giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [1; 2].

Xem lời giải »


Câu 3:

Hàm số y = cos 2x đồng biến trên khoảng nào?

Xem lời giải »


Câu 4:

Hàm số y = cos 2x nghịch biến trên khoảng nào sau đây (k Î ℤ).

Xem lời giải »


Câu 5:

Cho tam giác ABC cân tại A, góc  BAC^=120° và AB = 4 cm. Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác ABC xung quanh đường thẳng chứa một cạnh của tam giác ABC.

Xem lời giải »


Câu 6:

Cho hình chóp S.ABCD. Gọi M là trung điểm SB, N thuộc SC sao cho SN = 2NC. Tìm giao điểm của SA và mp (DMN).

Xem lời giải »


Câu 7:

Cho hình chóp S.ABCD, gọi M là trung điểm SB và N là điểm thuộc cạnh SC sao cho SN = 2NC. Tính tỉ số  VS.AMNVS.ABC.

Xem lời giải »


Câu 8:

Cho hai hàm số f (x) = ax3 + bx2 + cx − 2 và g (x) = dx2 + ex + 2 (a, b, c, d, e Î ℝ). Biết rằng đồ thị của hàm số y = f (x) và y = g (x) cắt nhau tại ba điểm có hoành độ lần lượt là −2; −1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Media VietJack

Xem lời giải »