X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 6a; BC = 10a; với a là


Câu hỏi:

Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 6a; BC = 10a; với a là số thực dương.

1) Tính BH theo a.

2) Tính cos \(\widehat {ABC}\).

Trả lời:

Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 6a; BC = 10a; với a là (ảnh 1)

Áp dụng hệ thức lượng trong tam giác vuông, ta có:

1) AB2 = BH.BC

(6a)2 = BH.10a

BH = 36a2 : 10a = 3,6a

2)\(\cos \widehat {ABC} = \frac{{BH}}{{AB}} = \frac{{3,6a}}{{6a}} = \frac{3}{5}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính tích phân\(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sqrt {1 + \sin x} dx} \).

Xem lời giải »


Câu 2:

Tìm số thực a để \(\sqrt {9 - 3a} \)có nghĩa.

Xem lời giải »


Câu 3:

Cho hình chữ nhật ABCD, tâm O, AB = 4, BC = 3. I là trung điểm BC. Tính \(\left| {\overrightarrow {IA} - \overrightarrow {DI} } \right|;\left| {\overrightarrow {IA} + \overrightarrow {IB} } \right|\).

Xem lời giải »


Câu 4:

Cho tam giác đều cạnh a. Tính \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|;\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).

Xem lời giải »


Câu 5:

Cho tam giác ABC đều, cạnh a, tâm O. Tính \(\left| {\overrightarrow {AC} - \overrightarrow {AB} - \overrightarrow {OC} } \right|\).

Xem lời giải »


Câu 6:

Cho hai số dương x;y thỏa mãn điều kiện x+y ≤ 1. Chứng minh: \({x^2} - \frac{3}{{4x}} - \frac{x}{y} \le \frac{{ - 9}}{4}\).

Xem lời giải »


Câu 7:

Chọn ngẫu nhiên 3 số từ tập S = {1; 2; ...; 11}. Tính xác suất để tổng ba số được chọn là 12.

Xem lời giải »


Câu 8:

Tính giá trị biểu thức sau : B = cos0° + cos20° + cos 40° + ... + cos160° + cos180°.

Xem lời giải »