Cho tam giác ABCΔABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE
Câu hỏi:
Cho ΔABCΔABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE ⊥ AB, HF ⊥ AC (E ∈ AB; F ∈ AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.
c) Gọi I là giao điểm của EF và AH; M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.
Trả lời:

a) Chứng minh tứ giác AEHF là hình chữ nhật.
ΔABC vuông tại A ⇒ ^BAC= 90°
Vì HE⊥AB, HF⊥AC nên ^HEA= 90°, ^HFA= 90°
Xét tứ giác AEHF ta có:
^HEA=^HFA=^EAF= 90°
Suy ra, tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).
b) Gọi D là điểm đối xứng của A qua F.
Vì AEHF là hình chữ nhật suy ra EH // AF và EH = AF (tính chất của hình chữ nhật)
Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD. Suy ra, AF = FD.
Do đó, EH // FD và EH = FD.
Suy ra, DHEF là hình bình hành (dấu hiệu nhận biết)
c)
+) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.
+) Gọi O là giao điểm của EF và AM.
Vì AM là đường trung tuyến của ΔABCΔABC nên AM = MC suy ra ΔAMC cân tại M. Do đó, ^MAC=^MCA
Vì EHFA là hình chữ nhật, có I là giao điểm hai đường chéo nên ta có ^IAF=^IFA
Xét ΔAHC ta có: ^HAC+^HCA=90∘ hay ^IAF+^MCA=90∘
⇒ ^IAF+^MAC=90∘ hay ^OAF+^OFA=90∘
Xét ΔOAF có: ^OAF+^OFA=90∘⇒ ^AOF=90∘
⇒ EF vuông góc với AM tại O hay IF vuông góc với AM tại O.
+) Xét ΔKAM ta có:
GM ⊥ KA tại G
AH ⊥ KM tại H
Mà I là giao điểm của AH và GM nên I là trực tâm của ΔKAM.
⇒ KI ⊥ AM mà IF ⊥ AM
⇒ K, I, F thẳng hàng.
Ta có:
Ba điểm E, I, F thẳng hàng.
Ba điểm K, I, F thẳng hàng.
⇒ Bốn điểm I, K, E, F thẳng hàng.