X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABCΔABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE


Câu hỏi:

Cho ΔABCΔABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE AB, HF AC (E AB; F AC).

a) Chứng minh tứ giác AEHF là hình chữ nhật.

b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.

c) Gọi I là giao điểm của EF và AH; M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.

Trả lời:

Cho tam giác ABCΔABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE (ảnh 1)

a) Chứng minh tứ giác AEHF là hình chữ nhật.

ΔABC vuông tại A  \(\widehat {BAC}\)= 90°

Vì HEAB, HFAC nên \(\widehat {HEA}\)= 90°, \(\widehat {HFA}\)= 90°

Xét tứ giác AEHF ta có:

\(\widehat {HEA} = \widehat {HFA} = \widehat {EAF}\)= 90°

Suy ra, tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).

b) Gọi D là điểm đối xứng của A qua F.

Vì AEHF là hình chữ nhật suy ra EH // AF và EH = AF (tính chất của hình chữ nhật)

Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD. Suy ra, AF = FD.

Do đó, EH // FD và EH = FD.

Suy ra, DHEF là hình bình hành (dấu hiệu nhận biết)

c)

+) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.

+) Gọi O là giao điểm của EF và AM.

Vì AM là đường trung tuyến của ΔABCΔABC nên AM = MC suy ra ΔAMC cân tại M. Do đó, \(\widehat {MAC} = \widehat {MCA}\)

Vì EHFA là hình chữ nhật, có I là giao điểm hai đường chéo nên ta có \(\widehat {IAF} = \widehat {IFA}\)

Xét ΔAHC ta có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)

\(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OAF} + \widehat {OFA} = 90^\circ \)

Xét ΔOAF có: \(\widehat {OAF} + \widehat {OFA} = 90^\circ \) \(\widehat {AOF} = 90^\circ \)

EF vuông góc với AM tại O hay IF vuông góc với AM tại O.

+) Xét ΔKAM ta có:

GM KA tại G

AH KM tại H

Mà I là giao điểm của AH và GM nên I là trực tâm của ΔKAM.

KI AM mà IF AM

  K, I, F thẳng hàng.

Ta có:

Ba điểm E, I, F thẳng hàng.

Ba điểm K, I, F thẳng hàng.

Bốn điểm I, K, E, F thẳng hàng.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

Cho đường tròn (O; R) và dây BC cố định (BC < 2R), BF là đường kính. A là điểm di chuyển trên cung lớn BC (A khác B, C) sao cho tam giác ABC có ba góc nhọn, các đường cao AD và CE của tam giác ABC cắt nhau tại H.

a) Chứng minh AEDC nội tiếp.

b) Chứng minh HF đi qua trung điểm G của đoạn thẳng AC.

Xem lời giải »


Câu 6:

Chứng minh rằng \(\frac{{6n - 14}}{{2n - 5}}\)là phân số tối giản.

Xem lời giải »


Câu 7:

Có bao nhiêu số tự nhiên có hai chữ số mà hai chữ số của nó đều chẵn?

Xem lời giải »


Câu 8:

Giá trị của chữ số 6 ở phần thập phân trong số 63,546 là?

Xem lời giải »