Cho ( x + căn bậc hai của x^2 + 1)( y + căn bậc hai của y^2 + 1) = 1. Tính x + y.
Câu hỏi:
Cho \[\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\]. Tính x + y.
Trả lời:
Lời giải
Ta có: \[\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\]
\( \Leftrightarrow \left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \left( {x + \sqrt {{x^2} + 1} } \right)\left( {\sqrt {{x^2} + 1} - x} \right)\)
\( \Rightarrow y + \sqrt {{y^2} + 1} = \sqrt {{x^2} + 1} - x\)
\( \Leftrightarrow x + y = \sqrt {{x^2} + 1} - \sqrt {{y^2} + 1} \) (1)
Tương tự, ta có:
\( \Leftrightarrow \left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \left( {y + \sqrt {{y^2} + 1} } \right)\left( {\sqrt {{y^2} + 1} - y} \right)\)
\[ \Rightarrow x + \sqrt {{x^2} + 1} = \sqrt {{y^2} + 1} - y\]
\[ \Leftrightarrow x + y = \sqrt {{y^2} + 1} - \sqrt {{x^2} + 1} \] (2)
Cộng vế với vế của (1) và (2) thì x + y = 0
Vậy giá trị của biểu thức x + y là 0.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].
Xem lời giải »
Câu 2:
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.
Xem lời giải »
Câu 3:
Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.
Xem lời giải »
Câu 4:
Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).
a) Rút gọn biểu thức P.
b) Tìm bậc và hệ số biểu thức B.
c) Tìm giá trị các biến để P £ 0.
Xem lời giải »
Câu 5:
Cho 2 số thực x, y thỏa mãn \[\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\]. Tìm giá trị nhỏ nhất của biểu thức M = 10x4 + 8y4 − 15xy + 6x2 +5y2 + 2017.
Xem lời giải »
Câu 6:
Cho hàm số y = f (x) có đồ thị đạo hàm y = f ′(x) như hình bên.
Khẳng định nào sau đây là đúng?
Xem lời giải »
Câu 7:
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị ở hình bên. Số nghiệm dương phân biệt của phương trình \(f\left( x \right) = - \sqrt 3 \) là:
Xem lời giải »
Câu 8:
Giải phương trình 2x2 + y2 − 6x + 2xy − 2y + 5 = 0.
Xem lời giải »