Chọn đáp án đúng điền vào chỗ trống: “Khi quay một vòng quanh một cạnh góc vuông cố định, ta được hình nón” A. Hình tam giác vuông; B. Hình tam giác; C. Hình chữ nhật; D. Cả 3 đáp án tr
Câu hỏi:
Chọn đáp án đúng điền vào chỗ trống: “Khi quay ……… một vòng quanh một cạnh góc vuông cố định, ta được hình nón”
A. Hình tam giác vuông;
B. Hình tam giác;
C. Hình chữ nhật;
D. Cả 3 đáp án trên.
Trả lời:
Lời giải
Đáp án đúng là: A
Khi quay hình tam giác vuông một vòng quanh một cạnh góc vuông cố định, ta được hình nón.
Chọn đáp án A.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].
Xem lời giải »
Câu 2:
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.
Xem lời giải »
Câu 3:
Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.
Xem lời giải »
Câu 4:
Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).
a) Rút gọn biểu thức P.
b) Tìm bậc và hệ số biểu thức B.
c) Tìm giá trị các biến để P £ 0.
Xem lời giải »
Câu 5:
Một nhà máy sản xuất các hộp hình trụ kín cả hai đầu có thể tích V cho trước. Mối quan hệ giữa bán kính đáy R và chiều cao h của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là?
Xem lời giải »
Câu 6:
Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1).
Xem lời giải »
Câu 7:
Tìm m để phương trình \(\log _2^2\left( x \right) - {\log _2}\left( {{x^2}} \right) + 3 = m\) có nghiệm x Î [1; 8].
Xem lời giải »
Câu 8:
Tìm tất cả các giá trị của b để hàm số y = x2 + 2(b + 6)x + 4 đồng biến trên khoảng (6; +∞).
Xem lời giải »