X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Chọn phát biểu sai A. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi


Câu hỏi:

Chọn phát biểu sai?

A. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AB} = k\overrightarrow {BC} ,k \ne 0\).

B. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AC} = k\overrightarrow {BC} ,k \ne 0\).

C. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AB} = k\overrightarrow {AC} ,k \ne 0\).

D. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AB} = k\overrightarrow {AC} \).

Trả lời:

Đáp án đúng là: D

Ta có ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi các vec tơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {BC} \) cùng phương, hay \(\exists k \in \mathbb{R},k \ne 0\) sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \) hoặc \(\overrightarrow {AC} = k\overrightarrow {BC} \)

Chú ý rằng hệ số k phải khác 0 nên chỉ có đáp án D sai

Vậy đáp án cần chọn là D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:

Xem lời giải »


Câu 2:

Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.

Xem lời giải »


Câu 3:

Bất phương trình nào sau đây tương đương với bất phương trình x + 5 > 0?

Xem lời giải »


Câu 4:

Cho hàm số f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 1)

Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:

Xem lời giải »


Câu 5:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng BC tạo với mặt phẳng (SAC) góc 30°. Tính diện tích tam giác ABC.

Xem lời giải »


Câu 6:

Biết \(\int\limits_1^2 {\frac{{x + 1}}{{{x^2} + x\ln {\rm{x}}}}} d{\rm{x}} = \ln \left( {\ln a + b} \right)\) với a, b là các số nguyên dương. Tính P = a2 + ab + b2.

Xem lời giải »


Câu 7:

Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?

Xem lời giải »


Câu 8:

Cho các số phức z thỏa mãn |z| = 4. Biết rằng tập hợp các điểm biểu diễn số phức w = (3 + 4i)z + i là một đường tròn. Tính bán kính r của đường tròn đó.

Xem lời giải »