Cho các số phức z thỏa mãn |z| = 4. Biết rằng tập hợp các điểm biểu diễn số
Câu hỏi:
Cho các số phức z thỏa mãn |z| = 4. Biết rằng tập hợp các điểm biểu diễn số phức w = (3 + 4i)z + i là một đường tròn. Tính bán kính r của đường tròn đó.
A. r = 4
B. r = 5
C. r = 20
D. r = 22.
Trả lời:
Đáp án đúng là: C
Giả sử \(w = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\). Ta có:
\(\begin{array}{l}w = (3 + 4i)z + i \Leftrightarrow a + bi = (3 + 4i)z + i\\ \Leftrightarrow a + (b - 1)i = (3 + 4i)z\\ \Leftrightarrow z = \frac{{a + (b - 1)i}}{{3 + 4i}}\\ \Leftrightarrow z = \frac{{[a + (b - 1)i](3 - 4i)}}{{25}}\\ \Leftrightarrow z = \frac{1}{{25}}[3a + 4b - 4 + ( - 4a + 3b - 3)i]\end{array}\)
Theo giả thiết cho |z| = 4 nên ta có
\(\begin{array}{l}\frac{1}{{{{25}^2}}}\left[ {{{(3a + 4b - 4)}^2} + {{( - 4a + 3b - 3)}^2}} \right] = {4^2}\\ \Leftrightarrow {(3a + 4b - 4)^2} + {( - 4a + 3b - 3)^2} = {100^2}\\ \Leftrightarrow 25{a^2} + 25{b^2} + 25 - 50b = {100^2}\\ \Leftrightarrow {a^2} + {b^2} - 2b + 1 = {20^2}\\ \Leftrightarrow {a^2} + {(b - 1)^2} = {20^2}\end{array}\)
Tập hợp các điểm trong mặt phẳng tọa độ Oxy biểu diễn số phức w là một đường tròn có bán kính bằng 20
Vậy ta chọn đáp án C.