X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1, 2, 3 luôn đứng cạnh nhau


Câu hỏi:

Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1, 2, 3 luôn đứng cạnh nhau?

Trả lời:

Gọi số tự nhiên có 5 chữ số là \(\overline {abcde} \)

Buộc 3 chữ số 1, 2, 3 thành 1 cụm, đặt là A

Hoán vị các chữ số 1, 2, 3 cho nhau ta được 3! = 6 khả năng xảy ra của A

Có 3 cách chọn vị trí cho A trong \(\overline {abcde} \)

Sau khi chọn xong vị trí cho A, 2 chữ số còn lại có \(A_7^2\) = 42 cách chọn

Như vậy, sẽ có 3.6.42 = 756 số được tạo thành tính cả trường hợp a = 0.

* Xét a = 0: 

Khi đó, ta có 2 vị trí cho A, và mỗi vị trí có 6 khả năng xảy ra của A (Hoán vị 1, 2, 3)

Chữ số còn lại có 6 cách chọn

Vậy nếu a = 0 thì sẽ có 72 số được tạo thành.

Vậy số số tự nhiên có 5 chữ số (a khác 0) thỏa mãn yêu cầu bài toán: 756 – 72 = 684 số tự nhiên.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

Cho hình thang cân ABCD có CD = 2AB = 2a,(a > 0), \(\widehat {DAB}\) = 120°, AH vuông góc CD tại H. Tính \(\overrightarrow {AH} \left( {\overrightarrow {CD} - 4\overrightarrow {AD} } \right),\overrightarrow {AC} .\overrightarrow {BH} \).

Xem lời giải »


Câu 6:

Cho đường tròn (O;R) và dây cung MN = \(R\sqrt 3 \). Kẻ OK vuông góc MN tại K.

a) Tính OK theo r.

b) Tính góc \(\widehat {MOK}\) và góc \(\widehat {MON}\).

c) Tính số đo cung nhỏ, cung lớn MN.

Xem lời giải »


Câu 7:

Cho đường tròn (O) đường kính AB. Trên nửa đường tròn đó lấy hai điểm C, D. Kẻ CH vuông góc với AB cắt đường tròn tại điểm thứ hai E. Kẻ AK vuông góc với CD, cắt đường tròn tại điểm thứ hai F. Chứng minh rằng:

a) Hai cung nhỏ CF và DB bằng nhau.

b) DE = BF.

Xem lời giải »


Câu 8:

Nêu các ước của 2019.

Xem lời giải »