X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Đồ thị hàm số y = -x^3 + 3mx^2 - 3, có cực đại và cực tiểu đối xứng nhau qua đường


Câu hỏi:

Đồ thị hàm số y = −x3 + 3mx2 – 3, có cực đại và cực tiểu đối xứng nhau qua đường thẳng d : x + 8y − 74 = 0 khi m bằng.

Trả lời:

Ta có y' = −3x2 + 6mx

y' = 0 Û x2 – 2mx = 0

Û x = 0 hoặc x = 2m

Đồ thị hàm số có 2 cực trị khi m ¹ 0.

Khi đó 2 điểm cực trị là

M (0; −3m – 1) và N(2m; 4m3 – 3m – 1)

Gọi I là trung điểm MN Þ I(m; 2m3 – 3m – 1)

M, N đối xứng nhau qua đường thẳng d : x + 8y – 74 = 0 nên I Î (d) Þ m = 2.

Vậy m = 2.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a. CD = a. Góc giữa 2 mặt phẳng (SBC) và (ABCD) bằng 60º. Gọi I là trung điểm của cạnh AD. Biết 2 mặt phẳng ( SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD theo a.

Xem lời giải »


Câu 6:

Chứng minh miền tam giác ABC (như hình vẽ) là miền nghiệm của hệ bất phương trình \[\left\{ \begin{array}{l}x \ge 0\\5x - 4y \le 10\\4x + 5y \le 10\end{array} \right.\].

Chứng minh miền tam giác ABC (như hình vẽ) là miền nghiệm của hệ bất phương  (ảnh 1)

Xem lời giải »


Câu 7:

Giá trị nhỏ nhất của biểu thức \[B = \sqrt {4{a^2} - 4a + 1} \; + \;\sqrt {4{a^2} - 12a + 9} \].

Xem lời giải »


Câu 8:

Rút gọn biểu thức: \[A = \frac{{\sqrt x }}{{\sqrt x - 5}} - \frac{{10\sqrt x }}{{x - 25}} - \frac{5}{{\sqrt x + 5}}\] (x ≥ 0; x ¹ 25)

Xem lời giải »