Đồ thị hàm số y = -x^3 + 3mx^2 - 3, có cực đại và cực tiểu đối xứng nhau qua đường
Câu hỏi:
Đồ thị hàm số y = −x3 + 3mx2 – 3, có cực đại và cực tiểu đối xứng nhau qua đường thẳng d : x + 8y − 74 = 0 khi m bằng.
Trả lời:
Ta có y' = −3x2 + 6mx
y' = 0 Û x2 – 2mx = 0
Û x = 0 hoặc x = 2m
Đồ thị hàm số có 2 cực trị khi m ¹ 0.
Khi đó 2 điểm cực trị là
M (0; −3m – 1) và N(2m; 4m3 – 3m – 1)
Gọi I là trung điểm MN Þ I(m; 2m3 – 3m – 1)
Vì M, N đối xứng nhau qua đường thẳng d : x + 8y – 74 = 0 nên I Î (d) Þ m = 2.
Vậy m = 2.