X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Giá trị nhỏ nhất của hàm số y = x^3 + 2x^2 - 7x trên đoạn [0; 4] bằng A. -259


Câu hỏi:

Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng

A. −259;

B. 68;

C. 0;

D. −4.

Trả lời:

Đáp án đúng là: D

TXĐ: D = ℝ

Hàm số liên tục trên đoạn [0; 4]

Ta có: y¢ = 3x2 + 4x – 7 = 0

\( \Leftrightarrow \left[ \begin{array}{l}x = 1 \in [0;4]\\x = - \frac{7}{3} \notin [0;4]\end{array} \right.\)

Khi đó y(0) = 0; y(1) = −4; y(4) = 68

Vậy giá trị nhỏ nhất cần tìm là: −4.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông tại A. E là trung điểm của B’C’, CB’ cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a, AA’ = 6a.

Xem lời giải »


Câu 2:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B, biết BA = BC = 2a và (A’BC) hợp với đáy một góc 30°. Tính thể tích khối lăng trụ ABC.A’B’C’ là:

Xem lời giải »


Câu 3:

Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và \(\widehat {ABC} = 120^\circ \). Các cạnh AA', A'B, A'D cùng tạo với đáy một góc 60°. Tính theo a thể tích V của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Quãng đường AB gồm một đoạn lên dốc dài 4 km và một đoạn xuống dốc dài 5 km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc.

Xem lời giải »


Câu 5:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \(\widehat {ABC} = 120^\circ \); ∆SAB đều và nằm trong mặt phẳng vuôn góc với mặt đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC bằng

Xem lời giải »


Câu 6:

Một hộp chứa 5 bi xạnh, 7 bi đỏ và 8 bi vàng. Lấy ngẫu nhiên 8 viên bi từ hộp. Tính xác suất để 8 viên bi lấy ra có đủ cả 3 màu.

Xem lời giải »


Câu 7:

Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (A) 4x – 3y – 7z + 3 = 0 và điểm I(1; −1; 2). Phương trình mặt phẳng đối xứng với (A) qua I là

Xem lời giải »


Câu 8:

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): mx + y – 2z – 2 = 0 và (Q): x – 3y + mz + 5 = 0. Tìm tất cả các giá trị thực của m để hai mặt phẳng đã cho vuông góc với nhau.

Xem lời giải »