X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Gọi S là tập hợp tất cả các số nguyên dương của tham số m sao cho bất phương


Câu hỏi:

Gọi S là tập hợp tất cả các số nguyên dương của tham số m sao cho bất phương trình 4x – m . 2x – m + 15 ≥ 0 có nghiệm đúng với mọi x [1; 2]. Tính số phần tử của S.

A. 7

B. 4

C. 9

D. 6.

Trả lời:

Đáp án đúng là: D

4x – m . 2x – m + 15 ≥ 0 (1)

Đặt \({2^x} = t(t > 0)\) ta được \({t^2} - mt - m + 15 \ge 0\)      (2)

Để bất phương trình (1) có nghiệm đúng với mọi x [1; 2] thì (2) đúng với mọi t [2; 4]

Ta có: \((2) \Leftrightarrow {t^2} + 15 \ge m(t + 1) \Leftrightarrow \frac{{{t^2} + 15}}{{t + 1}} \ge m\)

Xét hàm số \(f(t) = \frac{{{t^2} + 15}}{{t + 1}},t \in [2;4]\)

Ta có \(f'(t) = \frac{{(t + 5)(t - 3)}}{{{{(t + 1)}^2}}}\); \(f'(t) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = - 5\end{array} \right. \Leftrightarrow t = 3\)

Bảng biến thiên:

Gọi S là tập hợp tất cả các số nguyên dương của tham số m sao cho bất phương  (ảnh 1)

Suy ra m ≤ 6

Vậy ta chọn đáp án D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:

Xem lời giải »


Câu 2:

Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.

Xem lời giải »


Câu 3:

Bất phương trình nào sau đây tương đương với bất phương trình x + 5 > 0?

Xem lời giải »


Câu 4:

Cho hàm số f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 1)

Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:

Xem lời giải »


Câu 5:

Chọn phát biểu sai?

Xem lời giải »


Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng BC tạo với mặt phẳng (SAC) góc 30°. Tính diện tích tam giác ABC.

Xem lời giải »


Câu 7:

Biết \(\int\limits_1^2 {\frac{{x + 1}}{{{x^2} + x\ln {\rm{x}}}}} d{\rm{x}} = \ln \left( {\ln a + b} \right)\) với a, b là các số nguyên dương. Tính P = a2 + ab + b2.

Xem lời giải »


Câu 8:

Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?

Xem lời giải »