Khi quay 1 hình tam giác vuông một vòng quanh một cạnh góc vuông cố định ta được hình:
Câu hỏi:
Khi quay 1 hình tam giác vuông một vòng quanh một cạnh góc vuông cố định ta được hình:
Trả lời:
Lời giải
Khi quay 1 hình tam giác vuông một vòng quanh một cạnh góc vuông cố định ta được một hình nón.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].
Xem lời giải »
Câu 2:
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.
Xem lời giải »
Câu 3:
Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.
Xem lời giải »
Câu 4:
Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).
a) Rút gọn biểu thức P.
b) Tìm bậc và hệ số biểu thức B.
c) Tìm giá trị các biến để P £ 0.
Xem lời giải »
Câu 5:
Chọn đáp án đúng điền vào chỗ trống: “Khi quay ……… một vòng quanh một cạnh góc vuông cố định, ta được hình nón”
Xem lời giải »
Câu 6:
Một nhà máy sản xuất các hộp hình trụ kín cả hai đầu có thể tích V cho trước. Mối quan hệ giữa bán kính đáy R và chiều cao h của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là?
Xem lời giải »
Câu 7:
Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1).
Xem lời giải »
Câu 8:
Tìm m để phương trình \(\log _2^2\left( x \right) - {\log _2}\left( {{x^2}} \right) + 3 = m\) có nghiệm x Î [1; 8].
Xem lời giải »