Phân tích các đa thức sau thành nhân tử a) 4x^2 − 4xy + y^2 b) 9x^3 − 9x^2y − 4x + 4y c) x^3 + 2 + 3(x^3 − 2)
Câu hỏi:
Phân tích các đa thức sau thành nhân tử
a) 4x2 − 4xy + y2
b) 9x3 − 9x2y − 4x + 4y
c) x3 + 2 + 3(x3 − 2)
Trả lời:
Lời giải
a) 4x2 − 4xy + y2
= (2x)2 − 2.2x.y + y2
= (2x − y)2
b) 9x3 − 9x2y − 4x + 4y
= 9x2(x − y) − 4(x − y)
= (x − y)(9x2 − 4)
= (x − y)(3x − 2)(3x + 2)
c) x3 + 2 + 3(x3 − 2)
= x3 + 2 + 3x3 − 6
= 4x3 − 4
= 4(x3 − 1)
= 4(x − 1)(x2 + x + 1)
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:
\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]
Xem lời giải »
Câu 2:
Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.
Xem lời giải »
Câu 3:
Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?
Xem lời giải »
Câu 4:
Chứng minh phương trình sau đây vô nghiệm:
5sin 2x + sin x + cos x + 6 = 0.
Xem lời giải »
Câu 5:
Cho hàm số y = f (x). Hàm số y = f ¢(x) có bảng biến thiên như sau:
Bất phương trình f (x) < ex + m đúng với mọi x Î (−1; 1) khi và chỉ khi:
Xem lời giải »
Câu 6:
Với hai điểm phân biệt A, B cố định và phân biệt. Một đường thẳng l thay đổi luôn đi qua A và cách B một khoảng \(\frac{{AB}}{2}\). Gọi H là hình chiếu của B lên l. Tập hợp điểm H là
Xem lời giải »
Câu 7:
Cho một điểm A cố định và một đường thẳng a cố định không đi qua A. Gọi O là một điểm thay đổi trên a. Chứng minh rằng các mặt cầu tâm O bán kính r = OA luôn luôn đi qua một đường tròn cố định.
Xem lời giải »
Câu 8:
Cho hàm số f (x) có đạo hàm trên khoảng (a; b). Trong các mệnh đề sau, mệnh đề nào sai?
Xem lời giải »