X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số y = (x + 1) / (x - 1)


Câu hỏi:

Tìm m để đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc hai nhánh của đồ thị.

Trả lời:

Phương trình hoành độ giao điểm là: \(mx + 1 = \frac{{x + 1}}{{x - 1}}\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\\left( {mx + 1} \right)\left( {x - 1} \right) = x + 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\f\left( x \right) = m{x^2} - mx - 2 = 0\;\left( 1 \right)\end{array} \right.\)

Theo hệ thức Vi-et, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\\{x_1}{x_2} = \frac{{ - 2}}{m}\end{array} \right.\)

Đường thẳng y = mx + 1 cắt đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại hai điểm thuộc hai nhánh của đồ thị thì (1) có hai nghiệm phân biệt x1, x2 khác 1 thỏa mãn:

(x1 − 1)(x2 − 1) < 0

 \( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\Delta = {m^2} + 8m > 0\\f\left( 1 \right) \ne 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\ - 2 \ne 0\\\frac{{ - 2}}{m} - 1 + 1 < 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\m > 0\end{array} \right. \Leftrightarrow m > 0\)

Vậy suy ra m > 0.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f (x) đồng biến trên khoảng (a; b). Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 2:

Cho hàm số y = f (x) có đạo hàm trên khoảng (a; b). Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 3:

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tỉ số thể tích của khối chóp S.MNPQ và khối chóp S.ABCD bằng:

Xem lời giải »


Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB. Tính tỉ số thể tích \(\frac{{{V_{S.CDMN}}}}{{{V_{S.CDAB}}}}\).

Xem lời giải »


Câu 5:

Gọi M, m tương ứng là GTLN và GTNN của hàm số \(y = \frac{{2\cos x + 1}}{{\cos x - 2}}\). Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 6:

Tìm GTLN và GTNN của hàm số sau: \(y = 1 - \sqrt {2{{\cos }^2}x + 1} \).

Xem lời giải »


Câu 7:

Tìm hệ số của x5 trong khai triển P (x) = (x + 1)6 + (x + 1)7 + … + (x + 1)12.

Xem lời giải »


Câu 8:

Giải phương trình: \(\sqrt {3x - 2} - \sqrt {x + 1} = 2{x^2} - x - 3\).

Xem lời giải »