Tìm m để hai đồ thị hàm số y = 2x – 1 và y’ = -x + m cắt nhau tại 1 điểm có hoành
Câu hỏi:
Tìm m để hai đồ thị hàm số y = 2x – 1 và y’ = –x + m cắt nhau tại 1 điểm có hoành độ bằng 2.
Trả lời:
Ta có: y = 2x – 1 (1)
y’ = –x + m (2)
Để (1) và (2) cắt nhau tại một điểm thì y = y’
Û 2x – 1 = –x + m
Û 3x = m + 1
Mà hai đồ thị cắt nhau tại điểm có hoành độ bằng 2 nên:
m + 1 = 3. 2
Û m = 5
Vậy giá trị m thỏa mãn là m = 5.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.
Xem lời giải »
Câu 2:
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3.
Xem lời giải »
Câu 3:
Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.
Xem lời giải »
Câu 5:
Tìm giá trị thực của tham số m để phương trình 9x −2.3x + 1 + m = 0 có hai nghiệm thực x1, x2 thỏa mãn x1 + x2 = 0.
Xem lời giải »
Câu 6:
Tìm các giá trị thực của tham số m để phương trình (m – 1)x2 – 2mx + m = 0 có một nghiệm lớn hơn 1 và một nghiệm nhỏ hơn 1.
Xem lời giải »
Câu 7:
Trong mặt phẳng toạ độ Oxy, gọi d là đường phân giác của góc phần tư thứ hai. Phép đối xứng trục Dd biến điểm P(5; −2) thành điểm P’ có toạ độ bao nhiêu?
Xem lời giải »
Câu 8:
Cho hàm số y = −x3 + 3mx2 − 3m − 1 = 0 với m là tham số thực. Tìm m để đồ thị hàm số đã cho có hai điểm cực trị A và B đối xứng nhau qua đường thẳng d: x + 8y – 74 = 0.
Xem lời giải »