Tìm nghiệm dương nhỏ nhất của phương trình (2sinx - cosx)(1 + cosx) = sin^2x
Câu hỏi:
Tìm nghiệm dương nhỏ nhất của phương trình (2sinx – cosx)(1 + cosx) = sin2x.
Trả lời:
(2sinx – cosx)(1 + cosx) = sin2x
⇔ (2sinx – cosx)(1 + cosx) = 1 – cos2x
⇔ (2sinx – cosx)(1 + cosx) = (1– cosx)(1 + cosx)
⇔ (1 + cosx)(2sinx – 1) = 0
⇔ \(\left[ \begin{array}{l}\cos x = - 1\\\sin x = \frac{1}{2}\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x = \pi + k2\pi \\x = \frac{\pi }{6} + m2\pi \\x = \frac{{5\pi }}{6} + l2\pi \end{array} \right.\left( {k,m,l \in \mathbb{Z}} \right)\).
Nghiệm dương nhỏ nhất là khi k, m, l = 0
Khi đó ta có nghiệm nhỏ nhất là xmin = \(\frac{\pi }{6}\).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tính tích phân\(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sqrt {1 + \sin x} dx} \).
Xem lời giải »
Câu 3:
Cho hình chữ nhật ABCD, tâm O, AB = 4, BC = 3. I là trung điểm BC. Tính \(\left| {\overrightarrow {IA} - \overrightarrow {DI} } \right|;\left| {\overrightarrow {IA} + \overrightarrow {IB} } \right|\).
Xem lời giải »
Câu 4:
Cho tam giác đều cạnh a. Tính \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|;\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).
Xem lời giải »
Câu 5:
Cho tam giác ABC, các cạnh BC, AC, AB có độ dài lần lượt là a, b, c. Chứng minh rằng: \(\frac{{\cos A + \cos B}}{{a + b}} = \frac{{\left( {b + c - a} \right)\left( {c + a - b} \right)}}{{2abc}}\).
Xem lời giải »
Câu 7:
Tìm x biết: \(\frac{{2x - 3}}{3} - \frac{3}{2} = \frac{{5 - 3x}}{6} - \frac{1}{3}\).
Xem lời giải »
Câu 8:
Rút gọn biểu thức: \(A = \left( {\frac{{2x + 1}}{{x\sqrt x - 1}} - \frac{{\sqrt x }}{{x + \sqrt x + 1}}} \right).\left( {\frac{{1 + x\sqrt x }}{{1 + \sqrt x }} - \sqrt x } \right)\) với x ≥ 0; x ≠ 1.
Xem lời giải »