Tìm số tự nhiên n sao cho n^2 - 14n - 256 là một số chính phương
Câu hỏi:
Tìm số tự nhiên n sao cho n2 – 14n – 256 là một số chính phương.
Trả lời:
Giả sử n2 – 14n – 256 là một số chính phương
Suy ra: n2 – 14n – 256 = a2 (a ∈ ℕ*)
⇔ n2 – 14n – 256 – a2 = 0
⇔ n2 – 7n – 7n + 49 – 305 – a2 = 0
⇔ n(n – 7) – 7(n – 7) – 305 = a2
⇔ (n – 7)2 – a2 – 305 = 0
⇔ (n – 7 + a)(n – 7 – a) = 305
TH1:
n – 7 – a = 1; n – 7 + a = 305
⇒ n – a = 8; n + a = 312
⇒ 2n = 320
⇒ n = 160
TH2:
n−7−a = 5; n – 7 + a = 61
⇒ n – a = 12; n + 1 = 68
⇒ 2n = 80
⇒ n = 40.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tính tích phân\(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sqrt {1 + \sin x} dx} \).
Xem lời giải »
Câu 3:
Cho hình chữ nhật ABCD, tâm O, AB = 4, BC = 3. I là trung điểm BC. Tính \(\left| {\overrightarrow {IA} - \overrightarrow {DI} } \right|;\left| {\overrightarrow {IA} + \overrightarrow {IB} } \right|\).
Xem lời giải »
Câu 4:
Cho tam giác đều cạnh a. Tính \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|;\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).
Xem lời giải »
Câu 5:
Tìm m để hàm số \(y = \sqrt {5\sin 4x - 6\cos 4x + 2m - 1} \) xác định với mọi x.
Xem lời giải »
Câu 6:
Cho đường tròn tâm O. Từ điểm M nằm ngoài đường tròn, vẽ hai tiếp tuyến ME và MF sao cho góc EMO bằng 30 độ. Biết chu vi tam giác MEF là 30 cm. Tính:
a) Độ dài EF.
b) Diện tích tam giác MEF.
Xem lời giải »
Câu 7:
Cho khối trụ có thiết diện qua trục OO′ là một hình vuông cạnh bằng 2. Mặt phẳng (P) qua trung điểm I của OO′và tạo với mặt phẳng chứa đáy góc 30°. Diện tích của thiết diện do (P) cắt khối trụ là bao nhiêu?
Xem lời giải »
Câu 8:
Chứng minh đẳng thức: \(C_n^{k - 1} + C_n^k = C_{n + 1}^k\).
Xem lời giải »