Tìm tất cả các giá trị của m để hàm số y=x^3/3 – (m + 1)x^2 + (m^2 – 3)x – 1 đạt cực trị tại x = -1
Câu hỏi:
Tìm tất cả các giá trị của m để hàm số y = x3/3 – (m + 1)x2 + (m2 – 3)x – 1 đạt cực trị tại x = -1
A. m = 0
B. m = -2
C. m = 0; m = -2
D. m = 0; m = 2
Trả lời:
Đáp án A.
Tập xác định D = R.
y' = x2 – 2(m + 1)x + m2 – 3, y’’ = 2x – 2(m + 1).
Hàm số đạt cực trị tại x = -1
Vậy m = 0 thì hàm số đạt cực trị tại x = -1
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Biết rằng đồ thị hàm số và đường thẳng y = x – 2 cắt nhau tại hai điểm phân biệt A(xA;yA) và B(xB;yB). Tính yA + yB.
Xem lời giải »
Câu 2:
Tung độ giao điểm của đồ thị các hàm số y = x3 – 3x2 + 2, y = -2x + 8 là:
Xem lời giải »
Câu 3:
Có bao nhiêu điểm M thuộc đồ thị hàm số sao cho khoảng cách từ M đến trục tung bằng hai lần khoảng cách từ M đến trục hoành
Xem lời giải »
Câu 4:
Cho hàm số Khẳng định nào sau đây là khẳng định sai?
Xem lời giải »
Câu 5:
Cho hàm số y = f(x) = x3 – 3x2 + m,∀m ∈ R. Tìm tham số m để hàm số có giá trị cực đại bằng 2
Xem lời giải »
Câu 6:
Tìm tất cả các giá trị của tham số m để hàm số y = -x3 + 2x2 + mx đạt cực đại tại x = 1
Xem lời giải »
Câu 7:
x = 2 không phải là điểm cực đại của hàm số nào sau đây?
Xem lời giải »
Câu 8:
Hàm số y = x3/3 – (m + 1)x2 + (2m2 + 1)x + m đạt cực tiểu tại x = 1 khi
Xem lời giải »