X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm tất cả các giá trị thực của tham số m để phương trình 3^(x-1) + 2m^2 - m - 3 = 0 có


Câu hỏi:

Tìm tất cả các giá trị thực của tham số m để phương trình 32x-1 + 2m2 – m – 3 = 0 có nghiệm.

A. \(m \in \left( { - 1;\frac{3}{2}} \right)\)

B. \(m \in \left( {\frac{1}{2}; + \infty } \right)\)

C. \(m \in \left( {0; + \infty } \right)\)

D. \(m \in \left[ { - 1;\frac{3}{2}} \right]\).

Trả lời:

Đáp án đúng là: A

Ta có: 32x-1 + 2m2 – m – 3 = 0

2m2 – m – 3 = –32x-1

Để phương trình 32x-1 + 2m2 – m – 3 = 0 có nghiệm thì 2m2 – m – 3 thuộc miền giá trị của hàm số f(x) = –32x-1

Ta lại có f(x) = –32x-1 < 0; x R

2m2 – m – 3 < 0

(m + 1)(2m – 3) < 0

\( \Leftrightarrow - 1 < m < \frac{3}{2}\)

Vậy ta chọn đáp án A.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thang  cân, AD = 2AB = 2CD = 2a. Hai mặt phẳng (SAB) và (SAD)  cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt  là trung điểm của SB và CD (tham khảo hình vẽ bên). Tính sin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD  bằng \(\frac{{{a^3}\sqrt 3 }}{4}\).

Cho hình chóp S.ABCD có đáy ABCD là hình thang  cân, AD = 2AB = 2CD = 2a (ảnh 1)

Xem lời giải »


Câu 2:

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:

Xem lời giải »


Câu 3:

Có bao nhiêu giá trị nguyên dương của m để hàm số y = ln(x3 – 3m2x + 72m) xác định trên (0; +∞).

Xem lời giải »


Câu 4:

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là:

Xem lời giải »


Câu 5:

Cho hình lăng trụ A1A2A3A4A5.B1B2B3B4B5, số đoạn thẳng có hai đỉnh là đỉnh hình lăng trụ là:

Xem lời giải »


Câu 6:

Trong mặt phẳng tọa độ Oxy cho đường thẳng d: x – 2y + 3 = 0 và I(1; –2). Phương trình đường thẳng d’ sao cho d là ảnh của đường thẳng d’ qua phép đối xứng tâm I là:

Xem lời giải »


Câu 7:

Giá trị nhỏ nhất của hàm số y = lnx trên đoạn [1; e] là?

Xem lời giải »


Câu 8:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, AB = a, \[{\rm{AD}} = a\sqrt 3 \], SA (ABCD). Khoảng cách từ O đến mặt phẳng (SCD) bằng \(\frac{{a\sqrt 3 }}{4}\). Thể tích khối đa diện S.BCD là:

Xem lời giải »