X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Trên đường thẳng d lấy ba điểm A,B,C theo thứ tự đó. Trên nửa mặt phẳng bờ d


Câu hỏi:

Trên đường thẳng d lấy ba điểm A,B,C theo thứ tự đó. Trên nửa mặt phẳng bờ d kẻ hai tia Ax, By cùng vuông góc với dt. Trên tia Ax lấy I. Tia vuông góc với CI tại C cắt By tại K. Đường tròn đường kính IC cắt IK tại P.

1) Chứng minh tứ giác CBPK nội tiếp được đường tròn.

2) Chứng mi nh AI.BK = AC.CB.

Trả lời:

Trên đường thẳng d lấy ba điểm A,B,C theo thứ tự đó. Trên nửa mặt phẳng bờ d  (ảnh 1)

1) Vì P thuộc đường tròn đường kính IC nên \(\widehat {CPI} = 90^\circ \)

Suy ra: \(\widehat {CPK} = 90^\circ \)

Xét tứ giác BCPK có:

\(\widehat {CPK} + \widehat {CBK} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra: BCPK nội tiếp đường tròn.

2) Vì \(\widehat {PCI} = 90^\circ \) \(\widehat {{C_1}} + \widehat {{C_2}} = 90^\circ \)

\(\widehat {{K_1}} + \widehat {{K_2}} = 90^\circ \)(vì tam giác KBC vuông tại B)

Suy ra: \(\widehat {{K_1}} = \widehat {{C_1}}\)

Xét ∆IAC và ∆CBK có:

\(\widehat {{K_1}} = \widehat {{C_1}}\)

\(\widehat {IAC} = \widehat {KBC} = 90^\circ \)

∆IAC ~ ∆CBK (g.g)

\(\frac{{AI}}{{BC}} = \frac{{AC}}{{BK}}\) AI.BK = AC.BC

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

2022 là hợp số hay số nguyên tố?

Xem lời giải »


Câu 6:

Cho tam giác ABC vuông tại A. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, d là tiếp tuyến của đường tròn tại A. Các tiếp tuyến của đường tròn tại B và C theo thứ tự ở D và E.

a) Tính \(\widehat {DOE}\).

b) Chứng minh: DE = BD + CE.

c) Chứng minh: BD.CE = R2.

Xem lời giải »


Câu 7:

A = {1; 2; 3; …; 16}. Bốc ngẫu nhiên 3 phần tử trong A. Tính xác suất để tổng 3 số bốc ra chia hết cho 3.

Xem lời giải »


Câu 8:

Cho đường tròn tâm O bán kính 5cm dây AB = 8 cm.

a) Tính khoảng cách từ tâm O đến dây AB.

b) Gọi I là điểm thuộc dây AB sao cho AI = 1cm. Kẻ dây CD đi qua I và vuông góc với AB. Chứng minh CD = AB.

Xem lời giải »