Với giá trị nào của tham số m thì (C): y=x^3-3(m+1)x^2+2(m^2+4m+1)x-4m(m+1) cắt trục hoành
Câu hỏi:
Với giá trị nào của tham số m thì (C): y=x3-3(m+1) x2+2(m2+4m+1)x-4m(m+1) cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn 1?
A.
B. m> 1/ 2
C. m< 1/2
D. m
Trả lời:
Phương trình hoành độ giao điểm của đồ thị (C) và trục Ox:
x3-3(m+1) x2+2(m2+4m+1)x-4m(m+1)=0
hay (x-2) (x2-(3m+1) x+2m2+2m)=0
Chọn A.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm tất các giá trị thực của tham số m để hàm số đạt cực trị tại thỏa mãn -2<
Xem lời giải »
Câu 2:
Tìm các giá trị của tham số m để hàm số:
đạt cực trị tại
Xem lời giải »
Câu 3:
Cho hàm số y= f(x) =ax3+ bx2+cx+d có đạo hàm là hàm số y= f’ (x) với đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y= f( x) tiếp xúc với trục hoành tại điểm có hoành độ dương . Khi đó đồ thị hàm số y= f( x) cắt trục tung tại điểm có tung độ là bao nhiêu?
Xem lời giải »
Câu 4:
Giá trị lớn nhất của hàm số bằng
Xem lời giải »
Câu 5:
Cho hàm số y=x3-3x2+4 có đồ thị (C) . Gọi d là đường thẳng qua I(1; 2) với hệ số góc k . Có bao nhiêu giá trị nguyên của k để d cắt (C) tại ba điểm phân biệt I, A, B sao cho I là trung điểm của đoạn thẳng AB là
Xem lời giải »