X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Xác định a, b, c biết parabol y = ax^2 + bx + c Đi qua ba điểm A(0 ; -1), B(1 ; -1)


Câu hỏi:

Xác định a, b, c biết parabol y = ax2 + bx + c Đi qua ba điểm A(0 ; –1), B(1 ; –1), C(–1; 1).

Trả lời:

(P): y = ax2 + bx + c

Parabol đi qua A(0 ; –1) –1 = a.02 + b.0 + c c = –1.

Parabol đi qua B(1 ; –1) –1 = a.12 + b.1 + c a + b + c = –1.

Mà c = –1 a + b = 0 (1)

Parabol đi qua C(–1; 1) a.(–1)2 + b.(–1) + c = 1 a – b + c = 1.

Mà c = –1 a – b = 2 (2)

Từ (1) và (2) a = 1; b = –1.

Vậy a = 1 ; b = –1 ; c = –1.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Đặt tính phép chia 16250 : 125.

Xem lời giải »


Câu 6:

Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại A cắt BC ở I.

a) Chứng minh: \(\frac{{IB}}{{IC}} = \frac{{A{B^2}}}{{A{C^2}}}\).

b) Tính IA, IC bắt rằng AB = 20 cm, AC = 28 cm, BC = 24 cm.

Xem lời giải »


Câu 7:

Hình chữ nhật ABCD có diện tích 1500 m2. Tính diện tích tam giác AED.
Hình chữ nhật ABCD có diện tích 1500 m2. Tính diện tích tam giác AED (ảnh 1)

Xem lời giải »


Câu 8:

Cho biểu thức \(M = \frac{{{x^4} + 2}}{{{x^6} + 1}} + \frac{{{x^2} - 1}}{{{x^4} - {x^2} + 1}} - \frac{{{x^2} + 3}}{{{x^4} + 4{x^2} + 3}}\).

a) Rút gọn M.

b) Tìm giá trị lớn nhất của M.

Xem lời giải »