X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng vecto AD + vecto BR + vecto CF


Câu hỏi:

Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng

\(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \).

Trả lời:

\(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {ED} + \overrightarrow {BF} + \overrightarrow {FE} + \overrightarrow {CD} + \overrightarrow {DF} \)

\( = \left( {\overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} } \right) + \left( {\overrightarrow {ED} + \overrightarrow {FE} + \overrightarrow {DF} } \right)\)

\( = \left( {\overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} } \right) + \left( {\overrightarrow {EF} + \overrightarrow {FE} } \right)\)

\( = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \)

Lại có: \(\overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} = \overrightarrow {AF} + \overrightarrow {FE} + \overrightarrow {BD} + \overrightarrow {DF} + \overrightarrow {CE} + \overrightarrow {ED} \)

\( = \left( {\overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} } \right) + \left( {\overrightarrow {FE} + \overrightarrow {ED} + \overrightarrow {DF} } \right)\)

\( = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính tích phân\(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sqrt {1 + \sin x} dx} \).

Xem lời giải »


Câu 2:

Tìm số thực a để \(\sqrt {9 - 3a} \)có nghĩa.

Xem lời giải »


Câu 3:

Cho hình chữ nhật ABCD, tâm O, AB = 4, BC = 3. I là trung điểm BC. Tính \(\left| {\overrightarrow {IA} - \overrightarrow {DI} } \right|;\left| {\overrightarrow {IA} + \overrightarrow {IB} } \right|\).

Xem lời giải »


Câu 4:

Cho tam giác đều cạnh a. Tính \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|;\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).

Xem lời giải »


Câu 5:

Cho a, b, c > 0 và a + b + c ≤ 1. Chứng minh rằng

\[\frac{1}{{{a^2} + 2bc}} + \frac{1}{{{b^2} + 2ac}} + \frac{1}{{{c^2} + 2ab}} \ge 9\].

Xem lời giải »


Câu 6:

Cho A = {0;1;2;3;4;5}.Từ các chữ số thuộc tập A lập được bao nhiêu số tự nhiên có 5 chữ số và số đó chia hết cho 2?

Xem lời giải »


Câu 7:

Cho tam giác ABC cân tại A, trung tuyến BD, CK. Lấy điểm E sao cho C là trung điểm của AE. Chứng minh BE = 2BD.

Xem lời giải »


Câu 8:

Cho a, b, c là các cạnh của một tam giác có diện tích S. Chứng minh rằng:

a2 + b2 + c2\(4\sqrt 3 S\).

Xem lời giải »