X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho biểu thức A = (a^2 + căn bậc hai a) / (a - căn bậc hai x + 1) - (2a - căn bậc hai a


Câu hỏi:

Cho biểu thức A = \(\frac{{{a^2} + \sqrt a }}{{a - \sqrt a + 1}} - \frac{{2a + \sqrt a }}{{\sqrt a }} + 1\).

a) Rút gọn A.

b) Tìm a để A = 2.

c) Tìm giá trị nhỏ nhất của A.

Trả lời:

a) A = \(\frac{{{a^2} + \sqrt a }}{{a - \sqrt a + 1}} - \frac{{2a + \sqrt a }}{{\sqrt a }} + 1\) (điều kiện: a > 0)

A = \[\frac{{\sqrt a \left( {\sqrt {{a^3}} + 1} \right)}}{{a - \sqrt a + 1}} - \frac{{\sqrt a \left( {2\sqrt a + 1} \right)}}{{\sqrt a }} + 1\]

A = \[\frac{{\sqrt a \left( {\sqrt a + 1} \right)\left( {a - \sqrt a + 1} \right)}}{{a - \sqrt a + 1}} - 2\sqrt a - 1 + 1\]

A = \[\sqrt a \left( {\sqrt a + 1} \right) - 2\sqrt a - 1 + 1\]

A = \[a + \sqrt a - 2\sqrt a - 1 + 1\]

A = \[a - \sqrt a \]

b) A = 2 thì \[a - \sqrt a \] = 2

\[a - \sqrt a \] – 2 = 0

\[a + \sqrt a - 2\sqrt a - 2 = 0\]

\[\sqrt a \left( {\sqrt a + 1} \right) - 2\left( {\sqrt a + 1} \right) = 0\]

\[\left( {\sqrt a - 2} \right)\left( {\sqrt a + 1} \right) = 0\]

\(\left[ \begin{array}{l}\sqrt a = 2\\\sqrt a = - 1\left( L \right)\end{array} \right.\)

a = 4

Vậy a = 4 thì A = 2

c) A = \[a - \sqrt a = {\left( {\sqrt a - \frac{1}{2}} \right)^2} - \frac{1}{4}\]

Ta thấy \[{\left( {\sqrt a - \frac{1}{2}} \right)^2} \ge 0\] với mọi a nên \[{\left( {\sqrt a - \frac{1}{2}} \right)^2} - \frac{1}{4} \ge \frac{{ - 1}}{4}\] với mọi a

Vậy giá trị nhỏ nhất của A là \(\frac{{ - 1}}{4}\) khi \(\sqrt a = \frac{1}{2}\) hay \(a = \frac{1}{4}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

Cho \(\frac{{AB}}{{CD}} = \frac{5}{7}\)và đoạn thẳng AB ngắn hơn CD là 10 cm. Tính độ dài đoạn thẳng AB và CD?

Xem lời giải »


Câu 6:

Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho \(\frac{{AB}}{{BC}} = \frac{3}{5}\), \(\frac{{BC}}{{CD}} = \frac{5}{6}\).

a) Tính tỉ số \(\frac{{AB}}{{CD}}\).

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD.

Xem lời giải »


Câu 7:

Cho tam giác ABC. Điểm D trên cạnh AB sao cho 3AD = 2DB. Lấy điểm E trên cạnh AC sao cho DE // BC. Giả sử AC + EC = 16cm. Tính AC, EC và AE.

Xem lời giải »


Câu 8:

Đặt dấu ngoặc một cách thích hợp để tính tổng đại số sau:

a) 942 – 2567 + 2563 – 1942.

b) 13 – 12 + 11 + 10 – 9 + 8 – 7 – 6 + 5 – 4 + 3 + 2 – 1.

Xem lời giải »