X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho đường thẳng d1: y = mx + 2m - 1 ( với m là tham số) và d2: y = x + 1


Câu hỏi:

Cho đường thẳng d1: y = mx + 2m – 1 ( với m là tham số) và d2: y = x + 1.

a) Với m = 2. Hãy vẽ các đường thẳng d1 và d2 trên cùng 1 mặt phẳng tọa độ . Tìm tọa độ giao điểm của 2 đường thẳng d1 và d2.

b) Tìm giá trị của m để đường thẳng d1 cắt trục hoành tại điểm có hoành độ bằng –3

c) Chứng minh rằng đường thẳng d1 luôn đi qua một điểm cố định với mọi giá trị của m.

Trả lời:

a) Với m = 2 thì ta có: d1: y = 2x + 3; d2: y = x + 1

Vẽ đường thằng đi qua 2 điểm A(0;3) và B\(\left( {\frac{{ - 3}}{2};0} \right)\) ta được d1

Vẽ đường thẳng đi qua 2 điểm C(0;1) và D(–1; 0) ta được d2

Cho đường thẳng d1: y = mx + 2m - 1 ( với m là tham số) và d2: y = x + 1 (ảnh 1)

Xét phương trình hoành độ giao điểm ta có:

2x + 3 = x + 1

x = – 2

Suy ra: y = –1

Vậy 2 đường thẳng cắt nhau tại E(–2; –1).

b) d1 cắt trục hoành tại điểm có hoành độ bằng –3 tức là cắt tại điểm P(–3 ;0)

Khi đó ta có: 0 = –3m + 2m – 1

m = – 1

c) Gọi điểm cố định mà d1 luôn đi qua là M(x0; y0)

Ta có: y0 = mx0 + 2m – 1 = m(x0 + 2) – 1

m(x0 + 2) = 1 + y0

Để phương trình đúng với mọi m thì:

\(\left\{ \begin{array}{l}{x_0} + 2 = 0\\{y_0} + 1 = 0\end{array} \right.\) \(\left\{ \begin{array}{l}{x_0} = - 2\\{y_0} = - 1\end{array} \right.\)

Vậy d1 luôn đi qua điểm cố định là M(–2;–1).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

Cho đường tròn (O) và điểm I không nằm trên đường tròn. Qua điểm I kẻ 2 dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D.

a) So sánh các cặp góc \(\widehat {ACI}\)\(\widehat {ABD}\), \(\widehat {CAI}\)\(\widehat {CDB\;}\).

b) Chứng minh các tam giác IAC và IDB đồng dạng.                                                                             

c) Chứng minh IA.IB = IC. ID.

Xem lời giải »


Câu 6:

Cuối năm 2005, số dân của 1 xã là 7500 người. Nếu tỉ lệ tăng dân số hàng năm là 1,6% thì cuối năm 2006 xã đó có bao nhiêu người?

Xem lời giải »


Câu 7:

Cho tam giác ABC và điểm M thỏa mãn \(3\overrightarrow {MA} - 2\overrightarrow {MB} + \overrightarrow {MC} = \left| {\overrightarrow {MB} - \overrightarrow {MA} } \right|\). Tìm tập hợp M?

Xem lời giải »


Câu 8:

Gọi G là trọng tâm của tam giac ABC. Từ G kẻ các đường thẳng song song với hai cạnh AB và AC, cắt BC lần lượt tại D và E. So sánh ba đoạn thẳng BD, DE, EC.

Xem lời giải »